2020-06-23 10:40:49 -04:00
|
|
|
################################################################################
|
|
|
|
# Module: utils.py
|
|
|
|
# Description: Utility functions for configuration, logging
|
|
|
|
# License: MIT, see full license in LICENSE.txt
|
2020-06-23 11:02:34 -04:00
|
|
|
# Web: https://github.com/louisleroy5/translater
|
2020-06-23 10:40:49 -04:00
|
|
|
################################################################################
|
|
|
|
# OSMnx
|
|
|
|
#
|
|
|
|
# Copyright (c) 2019 Geoff Boeing https://geoffboeing.com/
|
|
|
|
#
|
|
|
|
# Part of the following code is a derivative work of the code from the OSMnx
|
|
|
|
# project, which is licensed MIT License. This code therefore is also
|
|
|
|
# licensed under the terms of the The MIT License (MIT).
|
|
|
|
################################################################################
|
|
|
|
import contextlib
|
|
|
|
import datetime as dt
|
|
|
|
import json
|
|
|
|
import logging as lg
|
|
|
|
import multiprocessing
|
|
|
|
import os
|
|
|
|
import platform
|
|
|
|
import re
|
|
|
|
import sys
|
|
|
|
import time
|
|
|
|
import unicodedata
|
|
|
|
import warnings
|
|
|
|
from collections import OrderedDict
|
|
|
|
from datetime import datetime, timedelta
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
from pandas.io.json import json_normalize
|
|
|
|
from path import Path
|
|
|
|
|
2020-06-23 10:53:11 -04:00
|
|
|
from translater import settings
|
|
|
|
from translater.settings import ep_version
|
2020-06-23 10:40:49 -04:00
|
|
|
|
|
|
|
|
|
|
|
def config(
|
|
|
|
data_folder=settings.data_folder,
|
|
|
|
logs_folder=settings.logs_folder,
|
|
|
|
imgs_folder=settings.imgs_folder,
|
|
|
|
cache_folder=settings.cache_folder,
|
|
|
|
use_cache=settings.use_cache,
|
|
|
|
log_file=settings.log_file,
|
|
|
|
log_console=settings.log_console,
|
|
|
|
log_level=settings.log_level,
|
|
|
|
log_name=settings.log_name,
|
|
|
|
log_filename=settings.log_filename,
|
|
|
|
useful_idf_objects=settings.useful_idf_objects,
|
|
|
|
umitemplate=settings.umitemplate,
|
|
|
|
trnsys_default_folder=settings.trnsys_default_folder,
|
|
|
|
default_weight_factor="area",
|
|
|
|
ep_version=settings.ep_version,
|
|
|
|
):
|
|
|
|
"""Package configurations. Call this method at the beginning of script or at the
|
|
|
|
top of an interactive python environment to set package-wide settings.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_folder (str): where to save and load data files.
|
|
|
|
logs_folder (str): where to write the log files.
|
|
|
|
imgs_folder (str): where to save figures.
|
|
|
|
cache_folder (str): where to save the simulation results.
|
|
|
|
use_cache (bool): if True, use a local cache to save/retrieve many of
|
2020-06-23 10:53:11 -04:00
|
|
|
translater outputs such as EnergyPlus simulation results. This can
|
2020-06-23 10:40:49 -04:00
|
|
|
save a lot of time by not calling the simulation and DataPortal APIs
|
|
|
|
repetitively for the same requests.
|
|
|
|
log_file (bool): if true, save log output to a log file in logs_folder.
|
|
|
|
log_console (bool): if true, print log output to the console.
|
|
|
|
log_level (int): one of the logger.level constants.
|
|
|
|
log_name (str): name of the logger.
|
|
|
|
log_filename (str): name of the log file.
|
|
|
|
useful_idf_objects (list): a list of useful idf objects.
|
|
|
|
umitemplate (str): where the umitemplate is located.
|
|
|
|
trnsys_default_folder (str): root folder of TRNSYS install.
|
|
|
|
default_weight_factor:
|
|
|
|
ep_version (str): EnergyPlus version to use. eg. "9-2-0".
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
# set each global variable to the passed-in parameter value
|
|
|
|
settings.use_cache = use_cache
|
|
|
|
settings.cache_folder = Path(cache_folder).makedirs_p()
|
|
|
|
settings.data_folder = Path(data_folder).makedirs_p()
|
|
|
|
settings.imgs_folder = Path(imgs_folder).makedirs_p()
|
|
|
|
settings.logs_folder = Path(logs_folder).makedirs_p()
|
|
|
|
settings.log_console = log_console
|
|
|
|
settings.log_file = log_file
|
|
|
|
settings.log_level = log_level
|
|
|
|
settings.log_name = log_name
|
|
|
|
settings.log_filename = log_filename
|
|
|
|
settings.useful_idf_objects = useful_idf_objects
|
|
|
|
settings.umitemplate = umitemplate
|
|
|
|
settings.trnsys_default_folder = validate_trnsys_folder(trnsys_default_folder)
|
|
|
|
settings.zone_weight.set_weigth_attr(default_weight_factor)
|
|
|
|
settings.ep_version = validate_epversion(ep_version)
|
|
|
|
|
|
|
|
# if logging is turned on, log that we are configured
|
|
|
|
if settings.log_file or settings.log_console:
|
2020-06-23 10:53:11 -04:00
|
|
|
log("Configured translater")
|
2020-06-23 10:40:49 -04:00
|
|
|
|
|
|
|
|
|
|
|
def validate_epversion(ep_version):
|
|
|
|
"""Validates the ep_version form"""
|
|
|
|
if "." in ep_version:
|
|
|
|
raise NameError('Enter the EnergyPlus version in the form "9-2-0"')
|
|
|
|
return ep_version
|
|
|
|
|
|
|
|
|
|
|
|
def validate_trnsys_folder(trnsys_default_folder):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
trnsys_default_folder:
|
|
|
|
"""
|
|
|
|
if sys.platform == "win32":
|
|
|
|
if os.path.isdir(trnsys_default_folder):
|
|
|
|
return trnsys_default_folder
|
|
|
|
else:
|
|
|
|
warnings.warn(
|
|
|
|
"The TRNSYS path does not exist. Please set the TRNSYS "
|
|
|
|
"path with the --trnsys-default-folder option".format(
|
|
|
|
trnsys_default_folder
|
|
|
|
)
|
|
|
|
)
|
|
|
|
return trnsys_default_folder
|
|
|
|
else:
|
|
|
|
return trnsys_default_folder
|
|
|
|
|
|
|
|
|
|
|
|
def log(
|
|
|
|
message, level=None, name=None, filename=None, avoid_console=False, log_dir=None
|
|
|
|
):
|
|
|
|
"""Write a message to the log file and/or print to the the console.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
message (str): the content of the message to log
|
|
|
|
level (int): one of the logger.level constants
|
|
|
|
name (str): name of the logger
|
|
|
|
filename (str): name of the log file
|
|
|
|
avoid_console (bool): If True, don't print to console for this message
|
|
|
|
only
|
|
|
|
log_dir (str, optional): directory of log file. Defaults to
|
|
|
|
settings.log_folder
|
|
|
|
"""
|
|
|
|
if level is None:
|
|
|
|
level = settings.log_level
|
|
|
|
if name is None:
|
|
|
|
name = settings.log_name
|
|
|
|
if filename is None:
|
|
|
|
filename = settings.log_filename
|
|
|
|
logger = None
|
|
|
|
# if logging to file is turned on
|
|
|
|
if settings.log_file:
|
|
|
|
# get the current logger (or create a new one, if none), then log
|
|
|
|
# message at requested level
|
|
|
|
logger = get_logger(level=level, name=name, filename=filename, log_dir=log_dir)
|
|
|
|
if level == lg.DEBUG:
|
|
|
|
logger.debug(message)
|
|
|
|
elif level == lg.INFO:
|
|
|
|
logger.info(message)
|
|
|
|
elif level == lg.WARNING:
|
|
|
|
logger.warning(message)
|
|
|
|
elif level == lg.ERROR:
|
|
|
|
logger.error(message)
|
|
|
|
|
|
|
|
# if logging to console is turned on, convert message to ascii and print to
|
|
|
|
# the console
|
|
|
|
if settings.log_console and not avoid_console:
|
|
|
|
# capture current stdout, then switch it to the console, print the
|
|
|
|
# message, then switch back to what had been the stdout. this prevents
|
|
|
|
# logging to notebook - instead, it goes to console
|
|
|
|
standard_out = sys.stdout
|
|
|
|
sys.stdout = sys.__stdout__
|
|
|
|
|
|
|
|
# convert message to ascii for console display so it doesn't break
|
|
|
|
# windows terminals
|
|
|
|
message = (
|
|
|
|
unicodedata.normalize("NFKD", make_str(message))
|
|
|
|
.encode("ascii", errors="replace")
|
|
|
|
.decode()
|
|
|
|
)
|
|
|
|
print(message)
|
|
|
|
sys.stdout = standard_out
|
|
|
|
|
|
|
|
if level == lg.WARNING:
|
|
|
|
warnings.warn(message)
|
|
|
|
|
|
|
|
return logger
|
|
|
|
|
|
|
|
|
|
|
|
def get_logger(level=None, name=None, filename=None, log_dir=None):
|
|
|
|
"""Create a logger or return the current one if already instantiated.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
level (int): one of the logger.level constants.
|
|
|
|
name (str): name of the logger.
|
|
|
|
filename (str): name of the log file.
|
|
|
|
log_dir (str, optional): directory of the log file. Defaults to
|
|
|
|
settings.log_folder.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
logging.Logger: a Logger
|
|
|
|
"""
|
|
|
|
if isinstance(log_dir, str):
|
|
|
|
log_dir = Path(log_dir)
|
|
|
|
if level is None:
|
|
|
|
level = settings.log_level
|
|
|
|
if name is None:
|
|
|
|
name = settings.log_name
|
|
|
|
if filename is None:
|
|
|
|
filename = settings.log_filename
|
|
|
|
|
|
|
|
logger = lg.getLogger(name)
|
|
|
|
|
|
|
|
# if a logger with this name is not already set up
|
|
|
|
if not getattr(logger, "handler_set", None):
|
|
|
|
|
|
|
|
# get today's date and construct a log filename
|
|
|
|
todays_date = dt.datetime.today().strftime("%Y_%m_%d")
|
|
|
|
|
|
|
|
if not log_dir:
|
|
|
|
log_dir = settings.logs_folder
|
|
|
|
|
|
|
|
log_filename = log_dir / "{}_{}.log".format(filename, todays_date)
|
|
|
|
|
|
|
|
# if the logs folder does not already exist, create it
|
|
|
|
if not log_dir.exists():
|
|
|
|
log_dir.makedirs_p()
|
|
|
|
# create file handler and log formatter and set them up
|
|
|
|
try:
|
|
|
|
handler = lg.FileHandler(log_filename, encoding="utf-8")
|
|
|
|
except:
|
|
|
|
handler = lg.StreamHandler()
|
|
|
|
formatter = lg.Formatter(
|
|
|
|
"%(asctime)s [%(process)d] %(levelname)s - %(name)s - %(" "message)s"
|
|
|
|
)
|
|
|
|
handler.setFormatter(formatter)
|
|
|
|
logger.addHandler(handler)
|
|
|
|
logger.setLevel(level)
|
|
|
|
logger.handler_set = True
|
|
|
|
|
|
|
|
return logger
|
|
|
|
|
|
|
|
|
|
|
|
def close_logger(logger=None, level=None, name=None, filename=None, log_dir=None):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
logger:
|
|
|
|
level:
|
|
|
|
name:
|
|
|
|
filename:
|
|
|
|
log_dir:
|
|
|
|
"""
|
|
|
|
if not logger:
|
|
|
|
# try get logger by name
|
|
|
|
logger = get_logger(level=level, name=name, filename=filename, log_dir=log_dir)
|
|
|
|
handlers = logger.handlers[:]
|
|
|
|
for handler in handlers:
|
|
|
|
handler.close()
|
|
|
|
logger.removeHandler(handler)
|
|
|
|
|
|
|
|
|
|
|
|
def make_str(value):
|
|
|
|
"""Convert a passed-in value to unicode if Python 2, or string if Python 3.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
value (any): the value to convert to unicode/string
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
unicode or string
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
# for python 2.x compatibility, use unicode
|
|
|
|
return np.unicode(value)
|
|
|
|
except NameError:
|
|
|
|
# python 3.x has no unicode type, so if error, use str type
|
|
|
|
return str(value)
|
|
|
|
|
|
|
|
|
|
|
|
def load_umi_template_objects(filename):
|
|
|
|
"""Reads
|
|
|
|
|
|
|
|
Args:
|
|
|
|
filename (str): path of template file
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: Dict of umi_objects
|
|
|
|
"""
|
|
|
|
with open(filename) as f:
|
|
|
|
umi_objects = json.load(f)
|
|
|
|
return umi_objects
|
|
|
|
|
|
|
|
|
|
|
|
def umi_template_object_to_dataframe(umi_dict, umi_object):
|
|
|
|
"""Returns flattened DataFrame of umi_objects
|
|
|
|
|
|
|
|
Args:
|
|
|
|
umi_dict (dict): dict of umi objects
|
|
|
|
umi_object (str): umi_object name
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
pandas.DataFrame: flattened DataFrame of umi_objects
|
|
|
|
"""
|
|
|
|
return json_normalize(umi_dict[umi_object])
|
|
|
|
|
|
|
|
|
|
|
|
def get_list_of_common_umi_objects(filename):
|
|
|
|
"""Returns list of common umi objects
|
|
|
|
|
|
|
|
Args:
|
|
|
|
filename (str): path to umi template file
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: Dict of common umi objects
|
|
|
|
"""
|
|
|
|
umi_objects = load_umi_template(filename)
|
|
|
|
components = OrderedDict()
|
|
|
|
for umi_dict in umi_objects:
|
|
|
|
for x in umi_dict:
|
|
|
|
components[x] = umi_dict[x].columns.tolist()
|
|
|
|
return components
|
|
|
|
|
|
|
|
|
|
|
|
def newrange(previous, following):
|
|
|
|
"""Takes the previous DataFrame and calculates a new Index range. Returns a
|
|
|
|
DataFrame with a new index
|
|
|
|
|
|
|
|
Args:
|
|
|
|
previous (pandas.DataFrame): previous DataFrame
|
|
|
|
following (pandas.DataFrame): follwoing DataFrame
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
pandas.DataFrame: DataFrame with an incremented new index
|
|
|
|
"""
|
|
|
|
if not previous.empty:
|
|
|
|
from_index = previous.iloc[[-1]].index.values + 1
|
|
|
|
to_index = from_index + len(following)
|
|
|
|
|
|
|
|
following.index = np.arange(from_index, to_index)
|
|
|
|
following.rename_axis("$id", inplace=True)
|
|
|
|
return following
|
|
|
|
else:
|
|
|
|
# If previous dataframe is empty, return the orginal DataFrame
|
|
|
|
return following
|
|
|
|
|
|
|
|
|
|
|
|
def type_surface(row):
|
|
|
|
"""Takes a boundary and returns its corresponding umi-type
|
|
|
|
|
|
|
|
Args:
|
|
|
|
row:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The umi-type of boundary
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Floors
|
|
|
|
if row["Surface_Type"] == "Floor":
|
|
|
|
if row["Outside_Boundary_Condition"] == "Surface":
|
|
|
|
return 3
|
|
|
|
if row["Outside_Boundary_Condition"] == "Ground":
|
|
|
|
return 2
|
|
|
|
if row["Outside_Boundary_Condition"] == "Outdoors":
|
|
|
|
return 4
|
|
|
|
else:
|
|
|
|
return np.NaN
|
|
|
|
|
|
|
|
# Roofs & Ceilings
|
|
|
|
if row["Surface_Type"] == "Roof":
|
|
|
|
return 1
|
|
|
|
if row["Surface_Type"] == "Ceiling":
|
|
|
|
return 3
|
|
|
|
# Walls
|
|
|
|
if row["Surface_Type"] == "Wall":
|
|
|
|
if row["Outside_Boundary_Condition"] == "Surface":
|
|
|
|
return 5
|
|
|
|
if row["Outside_Boundary_Condition"] == "Outdoors":
|
|
|
|
return 0
|
|
|
|
return np.NaN
|
|
|
|
|
|
|
|
|
|
|
|
def label_surface(row):
|
|
|
|
"""Takes a boundary and returns its corresponding umi-Category
|
|
|
|
|
|
|
|
Args:
|
|
|
|
row:
|
|
|
|
"""
|
|
|
|
# Floors
|
|
|
|
if row["Surface_Type"] == "Floor":
|
|
|
|
if row["Outside_Boundary_Condition"] == "Surface":
|
|
|
|
return "Interior Floor"
|
|
|
|
if row["Outside_Boundary_Condition"] == "Ground":
|
|
|
|
return "Ground Floor"
|
|
|
|
if row["Outside_Boundary_Condition"] == "Outdoors":
|
|
|
|
return "Exterior Floor"
|
|
|
|
else:
|
|
|
|
return "Other"
|
|
|
|
|
|
|
|
# Roofs & Ceilings
|
|
|
|
if row["Surface_Type"] == "Roof":
|
|
|
|
return "Roof"
|
|
|
|
if row["Surface_Type"] == "Ceiling":
|
|
|
|
return "Interior Floor"
|
|
|
|
# Walls
|
|
|
|
if row["Surface_Type"] == "Wall":
|
|
|
|
if row["Outside_Boundary_Condition"] == "Surface":
|
|
|
|
return "Partition"
|
|
|
|
if row["Outside_Boundary_Condition"] == "Outdoors":
|
|
|
|
return "Facade"
|
|
|
|
return "Other"
|
|
|
|
|
|
|
|
|
|
|
|
def layer_composition(row):
|
|
|
|
"""Takes in a series with $id and thickness values and return an array of
|
|
|
|
dict of the form {'Material': {'$ref': ref}, 'thickness': thickness} If
|
|
|
|
thickness is 'nan', it returns None.
|
|
|
|
|
|
|
|
Returns (list): List of dicts
|
|
|
|
|
|
|
|
Args:
|
|
|
|
row (pandas.Series): a row
|
|
|
|
"""
|
|
|
|
array = []
|
|
|
|
ref = row["$id", "Outside_Layer"]
|
|
|
|
thickness = row["Thickness", "Outside_Layer"]
|
|
|
|
if np.isnan(ref):
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
array.append({"Material": {"$ref": str(int(ref))}, "Thickness": thickness})
|
|
|
|
for i in range(2, len(row["$id"]) + 1):
|
|
|
|
ref = row["$id", "Layer_{}".format(i)]
|
|
|
|
if np.isnan(ref):
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
thickness = row["Thickness", "Layer_{}".format(i)]
|
|
|
|
array.append(
|
|
|
|
{"Material": {"$ref": str(int(ref))}, "Thickness": thickness}
|
|
|
|
)
|
|
|
|
return array
|
|
|
|
|
|
|
|
|
|
|
|
def schedule_composition(row):
|
|
|
|
"""Takes in a series with $id and \*_ScheduleDay_Name values and return an
|
|
|
|
array of dict of the form {'$ref': ref}
|
|
|
|
|
|
|
|
Args:
|
|
|
|
row (pandas.Series): a row
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: list of dicts
|
|
|
|
"""
|
|
|
|
# Assumes 7 days
|
|
|
|
day_schedules = []
|
|
|
|
days = [
|
|
|
|
"Monday_ScheduleDay_Name",
|
|
|
|
"Tuesday_ScheduleDay_Name",
|
|
|
|
"Wednesday_ScheduleDay_Name",
|
|
|
|
"Thursday_ScheduleDay_Name",
|
|
|
|
"Friday_ScheduleDay_Name",
|
|
|
|
"Saturday_ScheduleDay_Name",
|
|
|
|
"Sunday_ScheduleDay_Name",
|
|
|
|
] # With weekends last (as defined in
|
|
|
|
# umi-template)
|
|
|
|
# Let's start with the `Outside_Layer`
|
|
|
|
for day in days:
|
|
|
|
try:
|
|
|
|
ref = row["$id", day]
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
day_schedules.append({"$ref": str(int(ref))})
|
|
|
|
return day_schedules
|
|
|
|
|
|
|
|
|
|
|
|
def year_composition(row):
|
|
|
|
"""Takes in a series with $id and ScheduleWeek_Name_{} values and return an
|
|
|
|
array of dict of the form {'FromDay': fromday, 'FromMonth': frommonth,
|
|
|
|
'Schedule': {'$ref': int( ref)}, 'ToDay': today, 'ToMonth': tomonth}
|
|
|
|
|
|
|
|
Args:
|
|
|
|
row (pandas.Series): a row
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: list of dicts
|
|
|
|
"""
|
|
|
|
parts = []
|
|
|
|
for i in range(1, 26 + 1):
|
|
|
|
try:
|
|
|
|
ref = row["$id", "ScheduleWeek_Name_{}".format(i)]
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
if ~np.isnan(ref):
|
|
|
|
fromday = row["Schedules", "Start_Day_{}".format(i)]
|
|
|
|
frommonth = row["Schedules", "Start_Month_{}".format(i)]
|
|
|
|
today = row["Schedules", "End_Day_{}".format(i)]
|
|
|
|
tomonth = row["Schedules", "End_Month_{}".format(i)]
|
|
|
|
|
|
|
|
parts.append(
|
|
|
|
{
|
|
|
|
"FromDay": fromday,
|
|
|
|
"FromMonth": frommonth,
|
|
|
|
"Schedule": {"$ref": str(int(ref))},
|
|
|
|
"ToDay": today,
|
|
|
|
"ToMonth": tomonth,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
return parts
|
|
|
|
|
|
|
|
|
|
|
|
def date_transform(date_str):
|
|
|
|
"""Simple function transforming one-based hours (1->24) into zero-based
|
|
|
|
hours (0->23)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
date_str (str): a date string of the form 'HH:MM'
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
datetime.datetime: datetime object
|
|
|
|
"""
|
|
|
|
if date_str[0:2] != "24":
|
|
|
|
return datetime.strptime(date_str, "%H:%M") - timedelta(hours=1)
|
|
|
|
return datetime.strptime("23:00", "%H:%M")
|
|
|
|
|
|
|
|
|
|
|
|
def weighted_mean(series, df, weighting_variable):
|
|
|
|
"""Compute the weighted average while ignoring NaNs. Implements
|
|
|
|
:func:`numpy.average`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
series (pandas.Series): the *series* on which to compute the mean.
|
|
|
|
df (pandas.DataFrame): the *df* containing weighting variables.
|
|
|
|
weighting_variable (str or list or tuple): Name of weights to use in
|
|
|
|
*df*. If multiple values given, the values are multiplied together.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
numpy.ndarray: the weighted average
|
|
|
|
"""
|
|
|
|
# get non-nan values
|
|
|
|
index = ~np.isnan(series.values.astype("float"))
|
|
|
|
|
|
|
|
# Returns weights. If multiple `weighting_variable`, df.prod will take care
|
|
|
|
# of multipling them together.
|
|
|
|
if not isinstance(weighting_variable, list):
|
|
|
|
weighting_variable = [weighting_variable]
|
|
|
|
try:
|
|
|
|
weights = df.loc[series.index, weighting_variable].astype("float").prod(axis=1)
|
|
|
|
except Exception:
|
|
|
|
raise
|
|
|
|
|
|
|
|
# Try to average
|
|
|
|
try:
|
|
|
|
wa = np.average(series[index].astype("float"), weights=weights[index])
|
|
|
|
except ZeroDivisionError:
|
|
|
|
log("Cannot aggregate empty series {}".format(series.name), lg.WARNING)
|
|
|
|
return np.NaN
|
|
|
|
except Exception:
|
|
|
|
raise
|
|
|
|
else:
|
|
|
|
return wa
|
|
|
|
|
|
|
|
|
|
|
|
def top(series, df, weighting_variable):
|
|
|
|
"""Compute the highest ranked value weighted by some other variable.
|
|
|
|
Implements
|
|
|
|
|
|
|
|
:func:`pandas.DataFrame.nlargest`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
series (pandas.Series): the *series* on which to compute the ranking.
|
|
|
|
df (pandas.DataFrame): the *df* containing weighting variables.
|
|
|
|
weighting_variable (str or list or tuple): Name of weights to use in
|
|
|
|
*df*. If multiple values given, the values are multiplied together.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
numpy.ndarray: the weighted top ranked variable
|
|
|
|
"""
|
|
|
|
# Returns weights. If multiple `weighting_variable`, df.prod will take care
|
|
|
|
# of multipling them together.
|
|
|
|
if not isinstance(series, pd.Series):
|
|
|
|
raise TypeError(
|
|
|
|
'"top()" only works on Series, ' "not DataFrames\n{}".format(series)
|
|
|
|
)
|
|
|
|
|
|
|
|
if not isinstance(weighting_variable, list):
|
|
|
|
weighting_variable = [weighting_variable]
|
|
|
|
|
|
|
|
try:
|
|
|
|
idx_ = (
|
|
|
|
df.loc[series.index]
|
|
|
|
.groupby(series.name)
|
|
|
|
.apply(lambda x: safe_prod(x, df, weighting_variable))
|
|
|
|
)
|
|
|
|
if not idx_.empty:
|
|
|
|
idx = idx_.nlargest(1).index
|
|
|
|
else:
|
|
|
|
log('No such names "{}"'.format(series.name))
|
|
|
|
return np.NaN
|
|
|
|
except KeyError:
|
|
|
|
log("Cannot aggregate empty series {}".format(series.name), lg.WARNING)
|
|
|
|
return np.NaN
|
|
|
|
except Exception:
|
|
|
|
raise
|
|
|
|
else:
|
|
|
|
if idx.isnull().any():
|
|
|
|
return np.NaN
|
|
|
|
else:
|
|
|
|
return pd.to_numeric(idx, errors="ignore").values[0]
|
|
|
|
|
|
|
|
|
|
|
|
def safe_prod(x, df, weighting_variable):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
x:
|
|
|
|
df:
|
|
|
|
weighting_variable:
|
|
|
|
"""
|
|
|
|
df_ = df.loc[x.index, weighting_variable]
|
|
|
|
if not df_.empty:
|
|
|
|
return df_.astype("float").prod(axis=1).sum()
|
|
|
|
else:
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
|
|
def copy_file(files, where=None):
|
|
|
|
"""Handles a copy of test idf files
|
|
|
|
|
|
|
|
Args:
|
|
|
|
files (str or list): path(s) of the file(s) to copy
|
|
|
|
where (str): path where to save the copy(ies)
|
|
|
|
"""
|
|
|
|
import shutil, os
|
|
|
|
|
|
|
|
if isinstance(files, str):
|
|
|
|
files = [files]
|
|
|
|
files = {os.path.basename(k): k for k in files}
|
|
|
|
|
|
|
|
# defaults to cache folder
|
|
|
|
if where is None:
|
|
|
|
where = settings.cache_folder
|
|
|
|
|
|
|
|
for file in files:
|
|
|
|
dst = os.path.join(where, file)
|
|
|
|
output_folder = where
|
|
|
|
if not os.path.isdir(output_folder):
|
|
|
|
os.makedirs(output_folder)
|
|
|
|
shutil.copyfile(files[file], dst)
|
|
|
|
files[file] = dst
|
|
|
|
|
|
|
|
return _unpack_tuple(list(files.values()))
|
|
|
|
|
|
|
|
|
|
|
|
class EnergyPlusProcessError(Exception):
|
|
|
|
"""EnergyPlus Process call error"""
|
|
|
|
|
|
|
|
def __init__(self, cmd, stderr, idf):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
cmd:
|
|
|
|
stderr:
|
|
|
|
idf:
|
|
|
|
"""
|
|
|
|
super().__init__(stderr)
|
|
|
|
self.cmd = cmd
|
|
|
|
self.idf = idf
|
|
|
|
self.stderr = stderr
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
"""Override that only returns the stderr"""
|
|
|
|
msg = ":\n".join([self.idf, self.stderr])
|
|
|
|
return msg
|
|
|
|
|
|
|
|
|
|
|
|
class EnergyPlusVersionError(Exception):
|
|
|
|
"""EnergyPlus Version call error"""
|
|
|
|
|
|
|
|
def __init__(self, idf_file, idf_version, ep_version):
|
|
|
|
super(EnergyPlusVersionError, self).__init__(None)
|
|
|
|
self.idf_file = idf_file
|
|
|
|
self.idf_version = idf_version
|
|
|
|
self.ep_version = ep_version
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
"""Override that only returns the stderr"""
|
|
|
|
if tuple(self.idf_version.split("-")) > tuple(self.ep_version.split("-")):
|
|
|
|
compares_ = "higher"
|
|
|
|
else:
|
|
|
|
compares_ = "lower"
|
|
|
|
msg = (
|
|
|
|
"The version of the idf file {} (v{}) is {} than the specified "
|
|
|
|
"EnergyPlus version (v{}). Specify the default EnergyPlus version "
|
|
|
|
"with :func:`config` that corresponds with the one installed on your machine"
|
|
|
|
" or specify the version in related module functions, e.g. :func:`run_eplus`.".format(
|
|
|
|
self.idf_file.basename(), self.idf_version, compares_, self.ep_version
|
|
|
|
)
|
|
|
|
)
|
|
|
|
return msg
|
|
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def cd(path):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
path:
|
|
|
|
"""
|
|
|
|
log("initially inside {0}".format(os.getcwd()))
|
|
|
|
CWD = os.getcwd()
|
|
|
|
|
|
|
|
os.chdir(path)
|
|
|
|
log("inside {0}".format(os.getcwd()))
|
|
|
|
try:
|
|
|
|
yield
|
|
|
|
finally:
|
|
|
|
os.chdir(CWD)
|
|
|
|
log("finally inside {0}".format(os.getcwd()))
|
|
|
|
|
|
|
|
|
|
|
|
def rmse(data, targets):
|
|
|
|
"""calculate rmse with target values
|
|
|
|
|
|
|
|
# Todo : write de description of the args
|
|
|
|
Args:
|
|
|
|
data:
|
|
|
|
targets:
|
|
|
|
"""
|
|
|
|
y = piecewise(data)
|
|
|
|
predictions = y
|
|
|
|
error = np.sqrt(np.mean((predictions - targets) ** 2))
|
|
|
|
return error
|
|
|
|
|
|
|
|
|
|
|
|
def piecewise(data):
|
|
|
|
"""returns a piecewise function from an array of the form [hour1, hour2,
|
|
|
|
..., value1, value2, ...]
|
|
|
|
|
|
|
|
# Todo : write de description of the args
|
|
|
|
Args:
|
|
|
|
data:
|
|
|
|
"""
|
|
|
|
nb = int(len(data) / 2)
|
|
|
|
bins = data[0:nb]
|
|
|
|
sf = data[nb:]
|
|
|
|
x = np.linspace(0, 8760, 8760)
|
|
|
|
# build condition array
|
|
|
|
conds = [x < bins[0]]
|
|
|
|
conds.extend([np.logical_and(x >= i, x < j) for i, j in zip(bins[0:], bins[1:])])
|
|
|
|
# build function array. This is the value of y when the condition is met.
|
|
|
|
funcs = sf
|
|
|
|
y = np.piecewise(x, conds, funcs)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def checkStr(datafile, string, begin_line=0):
|
|
|
|
"""Find the first occurrence of a string and return its line number
|
|
|
|
|
|
|
|
Returns: the list index containing the string
|
|
|
|
|
|
|
|
Args:
|
|
|
|
datafile (list-like): a list-like object
|
|
|
|
string (str): the string to find in the txt file
|
|
|
|
"""
|
|
|
|
value = []
|
|
|
|
count = 0
|
|
|
|
for line in datafile:
|
|
|
|
if count < begin_line:
|
|
|
|
count += 1
|
|
|
|
continue
|
|
|
|
count += 1
|
|
|
|
match = re.search(string, str(line))
|
|
|
|
if match:
|
|
|
|
return count
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
def write_lines(file_path, lines):
|
|
|
|
"""Delete file if exists, then write lines in it
|
|
|
|
|
|
|
|
Args:
|
|
|
|
file_path (str): path of the file
|
|
|
|
lines (list of str): lines to be written in file
|
|
|
|
"""
|
|
|
|
# Delete temp file if exists
|
|
|
|
if os.path.exists(file_path):
|
|
|
|
os.remove(file_path)
|
|
|
|
# Save lines in temp file
|
|
|
|
temp_idf_file = open(file_path, "w+")
|
|
|
|
for line in lines:
|
|
|
|
temp_idf_file.write("%s" % line)
|
|
|
|
temp_idf_file.close()
|
|
|
|
|
|
|
|
|
|
|
|
def load_umi_template(json_template):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
json_template: Absolute or relative filepath to an umi json_template
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
pandas.DataFrame: 17 DataFrames, one for each component groups
|
|
|
|
"""
|
|
|
|
if os.path.isfile(json_template):
|
|
|
|
with open(json_template) as f:
|
|
|
|
dicts = json.load(f, object_pairs_hook=OrderedDict)
|
|
|
|
|
|
|
|
return [{key: json_normalize(value)} for key, value in dicts.items()]
|
|
|
|
else:
|
|
|
|
raise ValueError("File {} does not exist".format(json_template))
|
|
|
|
|
|
|
|
|
|
|
|
def check_unique_name(first_letters, count, name, unique_list, suffix=False):
|
|
|
|
"""Making sure new_name does not already exist
|
|
|
|
|
|
|
|
Args:
|
|
|
|
first_letters (str): string at the beginning of the name, giving a hint
|
|
|
|
on what the variable is.
|
|
|
|
count (int): increment to create a unique id in the name.
|
|
|
|
name (str): name that was just created. To be verified that it is unique
|
|
|
|
in this function.
|
|
|
|
unique_list (list): list where unique names are stored.
|
|
|
|
suffix (bool):
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
new_name (str): name that is unique
|
|
|
|
"""
|
|
|
|
if suffix:
|
|
|
|
while name in unique_list:
|
|
|
|
count += 1
|
|
|
|
end_count = "%03d" % count
|
|
|
|
name = name[:-3] + end_count
|
|
|
|
else:
|
|
|
|
while name in unique_list:
|
|
|
|
count += 1
|
|
|
|
end_count = "%06d" % count
|
|
|
|
name = first_letters + "_" + end_count
|
|
|
|
|
|
|
|
return name, count
|
|
|
|
|
|
|
|
|
|
|
|
def angle(v1, v2, acute=True):
|
|
|
|
"""Calculate the angle between 2 vectors
|
|
|
|
|
|
|
|
Args:
|
|
|
|
v1 (Vector3D): vector 1
|
|
|
|
v2 (Vector3D): vector 2
|
|
|
|
acute (bool): If True, give the acute angle, else gives the obtuse one.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
angle (float): angle between the 2 vectors in degree
|
|
|
|
"""
|
|
|
|
angle = np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)))
|
|
|
|
if acute == True:
|
|
|
|
return angle
|
|
|
|
else:
|
|
|
|
return 2 * np.pi - angle
|
|
|
|
|
|
|
|
|
|
|
|
def float_round(num, n):
|
|
|
|
"""Makes sure a variable is a float and round it at "n" decimals
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num (str, int, float): number we want to make sure is a float
|
|
|
|
n (int): number of decimals
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
num (float): a float rounded number
|
|
|
|
"""
|
|
|
|
num = float(num)
|
|
|
|
num = round(num, n)
|
|
|
|
return num
|
|
|
|
|
|
|
|
|
|
|
|
def get_eplus_dirs(version=ep_version):
|
|
|
|
"""Returns EnergyPlus root folder for a specific version.
|
|
|
|
|
|
|
|
Returns (Path): The folder path.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
version (str): Version number in the form "9-2-0" to search for.
|
|
|
|
"""
|
|
|
|
from eppy.runner.run_functions import install_paths
|
|
|
|
|
|
|
|
eplus_exe, eplus_weather = install_paths(version)
|
|
|
|
return Path(eplus_exe).dirname()
|
|
|
|
|
|
|
|
|
|
|
|
def warn_if_not_compatible():
|
|
|
|
"""Checks if an EnergyPlus install is detected. If the latest version
|
2020-06-23 10:53:11 -04:00
|
|
|
detected is higher than the one specified by translater, a warning is also
|
2020-06-23 10:40:49 -04:00
|
|
|
raised.
|
|
|
|
"""
|
|
|
|
eplus_homes = get_eplus_basedirs()
|
|
|
|
|
|
|
|
if not eplus_homes:
|
|
|
|
warnings.warn(
|
|
|
|
"No installation of EnergyPlus could be detected on this "
|
2020-06-23 10:53:11 -04:00
|
|
|
"machine. Please install EnergyPlus from https://energyplus.net before using translater"
|
2020-06-23 10:40:49 -04:00
|
|
|
)
|
|
|
|
if len(eplus_homes) > 1:
|
|
|
|
# more than one installs
|
|
|
|
warnings.warn(
|
|
|
|
"There are more than one versions of EnergyPlus on this machine. Make "
|
|
|
|
"sure you provide the appropriate version number when possible. "
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_eplus_basedirs():
|
|
|
|
"""Returns a list of possible E+ install paths"""
|
|
|
|
if platform.system() == "Windows":
|
|
|
|
eplus_homes = Path("C:\\").glob("EnergyPlusV*")
|
|
|
|
return eplus_homes
|
|
|
|
elif platform.system() == "Linux":
|
|
|
|
eplus_homes = Path("/usr/local/").glob("EnergyPlus-*")
|
|
|
|
return eplus_homes
|
|
|
|
elif platform.system() == "Darwin":
|
|
|
|
eplus_homes = Path("/Applications").glob("EnergyPlus-*")
|
|
|
|
return eplus_homes
|
|
|
|
else:
|
|
|
|
warnings.warn(
|
2020-06-23 10:53:11 -04:00
|
|
|
"translater is not compatible with %s. It is only compatible "
|
2020-06-23 10:40:49 -04:00
|
|
|
"with Windows, Linux or MacOs" % platform.system()
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def timeit(method):
|
|
|
|
"""Use this method as a decorator on a function to calculate the time it
|
|
|
|
take to complete. Uses the :func:`log` method.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> @timeit
|
|
|
|
>>> def myfunc():
|
|
|
|
>>> return 'is a function'
|
|
|
|
|
|
|
|
Args:
|
|
|
|
method (function): A function.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def timed(*args, **kwargs):
|
|
|
|
ts = time.time()
|
|
|
|
log("Executing %r..." % method.__qualname__)
|
|
|
|
result = method(*args, **kwargs)
|
|
|
|
te = time.time()
|
|
|
|
|
|
|
|
tt = te - ts
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
name = result.Name
|
|
|
|
except:
|
|
|
|
name = result.__qualname__
|
|
|
|
except:
|
|
|
|
name = str(result)
|
|
|
|
if tt > 0.001:
|
|
|
|
log("Completed %r for %r in %.3f s" % (method.__qualname__, name, tt))
|
|
|
|
else:
|
|
|
|
log(
|
|
|
|
"Completed %r for %r in %.3f ms"
|
|
|
|
% (method.__qualname__, name, tt * 1000)
|
|
|
|
)
|
|
|
|
return result
|
|
|
|
|
|
|
|
return timed
|
|
|
|
|
|
|
|
|
|
|
|
def lcm(x, y):
|
|
|
|
"""This function takes two integers and returns the L.C.M.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x:
|
|
|
|
y:
|
|
|
|
"""
|
|
|
|
|
|
|
|
# choose the greater number
|
|
|
|
if x > y:
|
|
|
|
greater = x
|
|
|
|
else:
|
|
|
|
greater = y
|
|
|
|
|
|
|
|
while True:
|
|
|
|
if (greater % x == 0) and (greater % y == 0):
|
|
|
|
lcm = greater
|
|
|
|
break
|
|
|
|
greater += 1
|
|
|
|
|
|
|
|
return lcm
|
|
|
|
|
|
|
|
|
|
|
|
def reduce(function, iterable, **attr):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
function:
|
|
|
|
iterable:
|
|
|
|
**attr:
|
|
|
|
"""
|
|
|
|
it = iter(iterable)
|
|
|
|
value = next(it)
|
|
|
|
for element in it:
|
|
|
|
value = function(value, element, **attr)
|
|
|
|
return value
|
|
|
|
|
|
|
|
|
|
|
|
def _unpack_tuple(x):
|
|
|
|
"""Unpacks one-element tuples for use as return values
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x:
|
|
|
|
"""
|
|
|
|
if len(x) == 1:
|
|
|
|
return x[0]
|
|
|
|
else:
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def recursive_len(item):
|
|
|
|
"""Calculate the number of elements in nested list
|
|
|
|
|
|
|
|
Args:
|
|
|
|
item (list): list of lists (i.e. nested list)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Total number of elements in nested list
|
|
|
|
"""
|
|
|
|
if type(item) == list:
|
|
|
|
return sum(recursive_len(subitem) for subitem in item)
|
|
|
|
else:
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
|
|
|
def rotate(l, n):
|
|
|
|
"""Shift list elements to the left
|
|
|
|
|
|
|
|
Args:
|
|
|
|
l (list): list to rotate
|
|
|
|
n (int): number to shift list to the left
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: shifted list.
|
|
|
|
"""
|
|
|
|
return l[n:] + l[:n]
|
|
|
|
|
|
|
|
|
|
|
|
def parallel_process(in_dict, function, processors=-1, use_kwargs=True):
|
|
|
|
"""A parallel version of the map function with a progress btr.
|
|
|
|
|
|
|
|
Examples:
|
2020-06-23 10:53:11 -04:00
|
|
|
>>> import translater as tr
|
2020-06-23 10:40:49 -04:00
|
|
|
>>> files = ['tests/input_data/problematic/nat_ventilation_SAMPLE0.idf',
|
|
|
|
>>> 'tests/input_data/regular/5ZoneNightVent1.idf']
|
|
|
|
>>> wf = 'tests/input_data/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw'
|
|
|
|
>>> files = tr.copy_file(files)
|
|
|
|
>>> rundict = {file: dict(eplus_file=file, weather_file=wf,
|
|
|
|
>>> ep_version=ep_version, annual=True,
|
|
|
|
>>> prep_outputs=True, expandobjects=True,
|
|
|
|
>>> verbose='q', output_report='sql')
|
|
|
|
>>> for file in files}
|
|
|
|
>>> result = parallel_process(rundict, tr.run_eplus, use_kwargs=True)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_dict (dict-like): A dictionary to iterate over.
|
|
|
|
function (function): A python function to apply to the elements of
|
|
|
|
in_dict
|
|
|
|
processors (int): The number of cores to use
|
|
|
|
use_kwargs (bool): If True, pass the kwargs as arguments to `function` .
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
[function(array[0]), function(array[1]), ...]
|
|
|
|
"""
|
|
|
|
from tqdm import tqdm
|
|
|
|
from concurrent.futures import ProcessPoolExecutor, as_completed
|
|
|
|
|
|
|
|
if processors == -1:
|
|
|
|
processors = min(len(in_dict), multiprocessing.cpu_count())
|
|
|
|
|
|
|
|
if processors == 1:
|
|
|
|
kwargs = {
|
|
|
|
"desc": function.__name__,
|
|
|
|
"total": len(in_dict),
|
|
|
|
"unit": "runs",
|
|
|
|
"unit_scale": True,
|
|
|
|
"leave": True,
|
|
|
|
}
|
|
|
|
if use_kwargs:
|
|
|
|
futures = {a: function(**in_dict[a]) for a in tqdm(in_dict, **kwargs)}
|
|
|
|
else:
|
|
|
|
futures = {a: function(in_dict[a]) for a in tqdm(in_dict, **kwargs)}
|
|
|
|
else:
|
|
|
|
with ProcessPoolExecutor(max_workers=processors) as pool:
|
|
|
|
if use_kwargs:
|
|
|
|
futures = {pool.submit(function, **in_dict[a]): a for a in in_dict}
|
|
|
|
else:
|
|
|
|
futures = {pool.submit(function, in_dict[a]): a for a in in_dict}
|
|
|
|
|
|
|
|
kwargs = {
|
|
|
|
"desc": function.__name__,
|
|
|
|
"total": len(futures),
|
|
|
|
"unit": "runs",
|
|
|
|
"unit_scale": True,
|
|
|
|
"leave": True,
|
|
|
|
}
|
|
|
|
|
|
|
|
# Print out the progress as tasks complete
|
|
|
|
for f in tqdm(as_completed(futures), **kwargs):
|
|
|
|
pass
|
|
|
|
out = {}
|
|
|
|
# Get the results from the futures.
|
|
|
|
for key in futures:
|
|
|
|
try:
|
|
|
|
if processors > 1:
|
|
|
|
out[futures[key]] = key.result()
|
|
|
|
else:
|
|
|
|
out[key] = futures[key]
|
|
|
|
except Exception as e:
|
|
|
|
log(str(e), lg.ERROR)
|
|
|
|
out[futures[key]] = e
|
|
|
|
return out
|