mirror of
https://github.com/louisleroy5/trnslator.git
synced 2024-11-15 00:30:31 -05:00
86 lines
4.1 KiB
ReStructuredText
86 lines
4.1 KiB
ReStructuredText
|
Running multiple files
|
||
|
======================
|
||
|
|
||
|
Running multiple IDF files is easily achieved by using the :meth:`~translater.utils.parallel_process` method.
|
||
|
|
||
|
.. hint::
|
||
|
|
||
|
The :meth:`~translater.utils.parallel_process` method works with any method. You can use it to parallelize
|
||
|
other functions in your script.
|
||
|
|
||
|
To create a parallel run, first import the usual pacakge methods and configure `translater` to use caching and to
|
||
|
show logs in the console.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
>>> from path import Path
|
||
|
>>> from translater import load_idf, config, run_eplus, settings, parallel_process
|
||
|
>>> import pandas as pd
|
||
|
>>> config(use_cache=True, log_console=True)
|
||
|
|
||
|
Then, use
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
>>> from translater import load_idf, config, run_eplus, settings
|
||
|
>>> from translater import parallel_process
|
||
|
>>> import pandas as pd
|
||
|
>>> config(use_cache=True, log_console=True)
|
||
|
|
||
|
Then, use `glob` to make a list of NECB idf files in the input_data directory (relative to this package). The weather
|
||
|
file path is also created:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
>>> necb_basedir = Path("tests/input_data/necb")
|
||
|
>>> files = necb_basedir.glob("*.idf")
|
||
|
>>> epw = Path("data/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw")
|
||
|
|
||
|
For good measure, load the files in a DataFrame, which we will use to create the rundict in the next step.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
>>> idfs = pd.DataFrame({"file": files, "name": [file.basename() for file in files]})
|
||
|
|
||
|
The rundict, is the list of tasks we wish to do in parallel. This dictionary is passed to :meth:`~translater.idfclass
|
||
|
.parallel_process`. Here, we want to execute :meth:`~translater.idfclass.run_eplus` with the following parameters:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
>>> rundict = {
|
||
|
k: dict(
|
||
|
eplus_file=str(file),
|
||
|
prep_outputs=True,
|
||
|
weather_file=str(epw),
|
||
|
expandobjects=True,
|
||
|
verbose="v",
|
||
|
design_day=True,
|
||
|
output_report="sql_file",
|
||
|
)
|
||
|
for k, file in idfs.file.to_dict().items()
|
||
|
}
|
||
|
|
||
|
Finally, execute :meth:`~translater.utils.parallel_process`. The resulting sql_file paths, which we defined as the
|
||
|
type of output_report attribute for :meth:`~translater.idfclass.run_eplus` is returned as a dictionary with the same
|
||
|
keys as the index of the DataFrame.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
>>> sql_files = parallel_process(rundict, run_eplus, use_kwargs=True, processors=-1)
|
||
|
>>> sql_files
|
||
|
{0: Path('cache/06e92da0247c71762d64aed4bcf3cdb2/output_data/06e92da0247c71762d64aed4bcf3cdb2out.sql'),
|
||
|
1: Path('cache/aee8caf562b3519942ef88f533800dd0/output_data/aee8caf562b3519942ef88f533800dd0out.sql'),
|
||
|
2: Path('cache/9d14a6aa6fda03a77ed5c5c48d28a73b/output_data/9d14a6aa6fda03a77ed5c5c48d28a73bout.sql'),
|
||
|
3: Path('cache/5ddfa8827d2a577aabb02d60195bf53a/output_data/5ddfa8827d2a577aabb02d60195bf53aout.sql'),
|
||
|
4: Path('cache/225c3428099e2abcc4051750db12731b/output_data/225c3428099e2abcc4051750db12731bout.sql'),
|
||
|
5: Path('cache/0991d42c5af387833b68adffc0d7b523/output_data/0991d42c5af387833b68adffc0d7b523out.sql'),
|
||
|
6: Path('cache/e10a4bf8bae93b0b0d2ad2638c807b61/output_data/e10a4bf8bae93b0b0d2ad2638c807b61out.sql'),
|
||
|
7: Path('cache/86439047af9e8ff4650d6bab460d5e70/output_data/86439047af9e8ff4650d6bab460d5e70out.sql'),
|
||
|
8: Path('cache/68da0886afa316f75bc63d7e576d0228/output_data/68da0886afa316f75bc63d7e576d0228out.sql'),
|
||
|
9: Path('cache/68a8be47fe4573a61d388a0101798958/output_data/68a8be47fe4573a61d388a0101798958out.sql'),
|
||
|
10: Path('cache/f6f8abae5272bf607a9f53d18c10a50d/output_data/f6f8abae5272bf607a9f53d18c10a50dout.sql'),
|
||
|
11: Path('cache/4cf8589df098bb0c3f2b9f8589ec6ed6/output_data/4cf8589df098bb0c3f2b9f8589ec6ed6out.sql'),
|
||
|
12: Path('cache/5dd643faf859ed1aed5adffcecd0d47c/output_data/5dd643faf859ed1aed5adffcecd0d47cout.sql'),
|
||
|
13: Path('cache/e7cf6ae2be8917a409c9a1acad3bc349/output_data/e7cf6ae2be8917a409c9a1acad3bc349out.sql'),
|
||
|
14: Path('cache/3f122e04f7d8d19195cb8818a0be390f/output_data/3f122e04f7d8d19195cb8818a0be390fout.sql'),
|
||
|
15: Path('cache/d263b5b5d3bc56f2fb3795c61ac89cfe/output_data/d263b5b5d3bc56f2fb3795c61ac89cfeout.sql')}
|