Delete unused tests

This commit is contained in:
Unknown 2020-06-24 14:22:21 -04:00
parent dfefcd0c53
commit 95bab46cf0

View File

@ -278,57 +278,13 @@ def make_str(value):
return str(value)
def load_umi_template_objects(filename):
"""Reads
Args:
filename (str): path of template file
Returns:
dict: Dict of umi_objects
"""
with open(filename) as f:
umi_objects = json.load(f)
return umi_objects
def umi_template_object_to_dataframe(umi_dict, umi_object):
"""Returns flattened DataFrame of umi_objects
Args:
umi_dict (dict): dict of umi objects
umi_object (str): umi_object name
Returns:
pandas.DataFrame: flattened DataFrame of umi_objects
"""
return json_normalize(umi_dict[umi_object])
def get_list_of_common_umi_objects(filename):
"""Returns list of common umi objects
Args:
filename (str): path to umi template file
Returns:
dict: Dict of common umi objects
"""
umi_objects = load_umi_template(filename)
components = OrderedDict()
for umi_dict in umi_objects:
for x in umi_dict:
components[x] = umi_dict[x].columns.tolist()
return components
def newrange(previous, following):
"""Takes the previous DataFrame and calculates a new Index range. Returns a
DataFrame with a new index
Args:
previous (pandas.DataFrame): previous DataFrame
following (pandas.DataFrame): follwoing DataFrame
following (pandas.DataFrame): following DataFrame
Returns:
pandas.DataFrame: DataFrame with an incremented new index
@ -345,170 +301,6 @@ def newrange(previous, following):
return following
def type_surface(row):
"""Takes a boundary and returns its corresponding umi-type
Args:
row:
Returns:
str: The umi-type of boundary
"""
# Floors
if row["Surface_Type"] == "Floor":
if row["Outside_Boundary_Condition"] == "Surface":
return 3
if row["Outside_Boundary_Condition"] == "Ground":
return 2
if row["Outside_Boundary_Condition"] == "Outdoors":
return 4
else:
return np.NaN
# Roofs & Ceilings
if row["Surface_Type"] == "Roof":
return 1
if row["Surface_Type"] == "Ceiling":
return 3
# Walls
if row["Surface_Type"] == "Wall":
if row["Outside_Boundary_Condition"] == "Surface":
return 5
if row["Outside_Boundary_Condition"] == "Outdoors":
return 0
return np.NaN
def label_surface(row):
"""Takes a boundary and returns its corresponding umi-Category
Args:
row:
"""
# Floors
if row["Surface_Type"] == "Floor":
if row["Outside_Boundary_Condition"] == "Surface":
return "Interior Floor"
if row["Outside_Boundary_Condition"] == "Ground":
return "Ground Floor"
if row["Outside_Boundary_Condition"] == "Outdoors":
return "Exterior Floor"
else:
return "Other"
# Roofs & Ceilings
if row["Surface_Type"] == "Roof":
return "Roof"
if row["Surface_Type"] == "Ceiling":
return "Interior Floor"
# Walls
if row["Surface_Type"] == "Wall":
if row["Outside_Boundary_Condition"] == "Surface":
return "Partition"
if row["Outside_Boundary_Condition"] == "Outdoors":
return "Facade"
return "Other"
def layer_composition(row):
"""Takes in a series with $id and thickness values and return an array of
dict of the form {'Material': {'$ref': ref}, 'thickness': thickness} If
thickness is 'nan', it returns None.
Returns (list): List of dicts
Args:
row (pandas.Series): a row
"""
array = []
ref = row["$id", "Outside_Layer"]
thickness = row["Thickness", "Outside_Layer"]
if np.isnan(ref):
pass
else:
array.append({"Material": {"$ref": str(int(ref))}, "Thickness": thickness})
for i in range(2, len(row["$id"]) + 1):
ref = row["$id", "Layer_{}".format(i)]
if np.isnan(ref):
pass
else:
thickness = row["Thickness", "Layer_{}".format(i)]
array.append(
{"Material": {"$ref": str(int(ref))}, "Thickness": thickness}
)
return array
def schedule_composition(row):
"""Takes in a series with $id and \*_ScheduleDay_Name values and return an
array of dict of the form {'$ref': ref}
Args:
row (pandas.Series): a row
Returns:
list: list of dicts
"""
# Assumes 7 days
day_schedules = []
days = [
"Monday_ScheduleDay_Name",
"Tuesday_ScheduleDay_Name",
"Wednesday_ScheduleDay_Name",
"Thursday_ScheduleDay_Name",
"Friday_ScheduleDay_Name",
"Saturday_ScheduleDay_Name",
"Sunday_ScheduleDay_Name",
] # With weekends last (as defined in
# umi-template)
# Let's start with the `Outside_Layer`
for day in days:
try:
ref = row["$id", day]
except:
pass
else:
day_schedules.append({"$ref": str(int(ref))})
return day_schedules
def year_composition(row):
"""Takes in a series with $id and ScheduleWeek_Name_{} values and return an
array of dict of the form {'FromDay': fromday, 'FromMonth': frommonth,
'Schedule': {'$ref': int( ref)}, 'ToDay': today, 'ToMonth': tomonth}
Args:
row (pandas.Series): a row
Returns:
list: list of dicts
"""
parts = []
for i in range(1, 26 + 1):
try:
ref = row["$id", "ScheduleWeek_Name_{}".format(i)]
except:
pass
else:
if ~np.isnan(ref):
fromday = row["Schedules", "Start_Day_{}".format(i)]
frommonth = row["Schedules", "Start_Month_{}".format(i)]
today = row["Schedules", "End_Day_{}".format(i)]
tomonth = row["Schedules", "End_Month_{}".format(i)]
parts.append(
{
"FromDay": fromday,
"FromMonth": frommonth,
"Schedule": {"$ref": str(int(ref))},
"ToDay": today,
"ToMonth": tomonth,
}
)
return parts
def date_transform(date_str):
"""Simple function transforming one-based hours (1->24) into zero-based
hours (0->23)
@ -790,23 +582,6 @@ def write_lines(file_path, lines):
temp_idf_file.close()
def load_umi_template(json_template):
"""
Args:
json_template: Absolute or relative filepath to an umi json_template
Returns:
pandas.DataFrame: 17 DataFrames, one for each component groups
"""
if os.path.isfile(json_template):
with open(json_template) as f:
dicts = json.load(f, object_pairs_hook=OrderedDict)
return [{key: json_normalize(value)} for key, value in dicts.items()]
else:
raise ValueError("File {} does not exist".format(json_template))
def check_unique_name(first_letters, count, name, unique_list, suffix=False):
"""Making sure new_name does not already exist
@ -983,20 +758,6 @@ def lcm(x, y):
return lcm
def reduce(function, iterable, **attr):
"""
Args:
function:
iterable:
**attr:
"""
it = iter(iterable)
value = next(it)
for element in it:
value = function(value, element, **attr)
return value
def _unpack_tuple(x):
"""Unpacks one-element tuples for use as return values