################################################################################ # Module: utils.py # Description: Utility functions for configuration, logging # License: MIT, see full license in LICENSE.txt # Web: https://github.com/louisleroy5/translater ################################################################################ # OSMnx # # Copyright (c) 2019 Geoff Boeing https://geoffboeing.com/ # # Part of the following code is a derivative work of the code from the OSMnx # project, which is licensed MIT License. This code therefore is also # licensed under the terms of the The MIT License (MIT). ################################################################################ import contextlib import datetime as dt import json import logging as lg import multiprocessing import os import platform import re import sys import time import unicodedata import warnings from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas.io.json import json_normalize from path import Path from translater import settings from translater.settings import ep_version def config( data_folder=settings.data_folder, logs_folder=settings.logs_folder, imgs_folder=settings.imgs_folder, cache_folder=settings.cache_folder, use_cache=settings.use_cache, log_file=settings.log_file, log_console=settings.log_console, log_level=settings.log_level, log_name=settings.log_name, log_filename=settings.log_filename, useful_idf_objects=settings.useful_idf_objects, umitemplate=settings.umitemplate, trnsys_default_folder=settings.trnsys_default_folder, default_weight_factor="area", ep_version=settings.ep_version, ): """Package configurations. Call this method at the beginning of script or at the top of an interactive python environment to set package-wide settings. Args: data_folder (str): where to save and load data files. logs_folder (str): where to write the log files. imgs_folder (str): where to save figures. cache_folder (str): where to save the simulation results. use_cache (bool): if True, use a local cache to save/retrieve many of translater outputs such as EnergyPlus simulation results. This can save a lot of time by not calling the simulation and DataPortal APIs repetitively for the same requests. log_file (bool): if true, save log output to a log file in logs_folder. log_console (bool): if true, print log output to the console. log_level (int): one of the logger.level constants. log_name (str): name of the logger. log_filename (str): name of the log file. useful_idf_objects (list): a list of useful idf objects. umitemplate (str): where the umitemplate is located. trnsys_default_folder (str): root folder of TRNSYS install. default_weight_factor: ep_version (str): EnergyPlus version to use. eg. "9-2-0". Returns: None """ # set each global variable to the passed-in parameter value settings.use_cache = use_cache settings.cache_folder = Path(cache_folder).makedirs_p() settings.data_folder = Path(data_folder).makedirs_p() settings.imgs_folder = Path(imgs_folder).makedirs_p() settings.logs_folder = Path(logs_folder).makedirs_p() settings.log_console = log_console settings.log_file = log_file settings.log_level = log_level settings.log_name = log_name settings.log_filename = log_filename settings.useful_idf_objects = useful_idf_objects settings.umitemplate = umitemplate settings.trnsys_default_folder = validate_trnsys_folder(trnsys_default_folder) settings.zone_weight.set_weigth_attr(default_weight_factor) settings.ep_version = validate_epversion(ep_version) # if logging is turned on, log that we are configured if settings.log_file or settings.log_console: log("Configured translater") def validate_epversion(ep_version): """Validates the ep_version form""" if "." in ep_version: raise NameError('Enter the EnergyPlus version in the form "9-2-0"') return ep_version def validate_trnsys_folder(trnsys_default_folder): """ Args: trnsys_default_folder: """ if sys.platform == "win32": if os.path.isdir(trnsys_default_folder): return trnsys_default_folder else: warnings.warn( "The TRNSYS path does not exist. Please set the TRNSYS " "path with the --trnsys-default-folder option".format( trnsys_default_folder ) ) return trnsys_default_folder else: return trnsys_default_folder def log( message, level=None, name=None, filename=None, avoid_console=False, log_dir=None ): """Write a message to the log file and/or print to the the console. Args: message (str): the content of the message to log level (int): one of the logger.level constants name (str): name of the logger filename (str): name of the log file avoid_console (bool): If True, don't print to console for this message only log_dir (str, optional): directory of log file. Defaults to settings.log_folder """ if level is None: level = settings.log_level if name is None: name = settings.log_name if filename is None: filename = settings.log_filename logger = None # if logging to file is turned on if settings.log_file: # get the current logger (or create a new one, if none), then log # message at requested level logger = get_logger(level=level, name=name, filename=filename, log_dir=log_dir) if level == lg.DEBUG: logger.debug(message) elif level == lg.INFO: logger.info(message) elif level == lg.WARNING: logger.warning(message) elif level == lg.ERROR: logger.error(message) # if logging to console is turned on, convert message to ascii and print to # the console if settings.log_console and not avoid_console: # capture current stdout, then switch it to the console, print the # message, then switch back to what had been the stdout. this prevents # logging to notebook - instead, it goes to console standard_out = sys.stdout sys.stdout = sys.__stdout__ # convert message to ascii for console display so it doesn't break # windows terminals message = ( unicodedata.normalize("NFKD", make_str(message)) .encode("ascii", errors="replace") .decode() ) print(message) sys.stdout = standard_out if level == lg.WARNING: warnings.warn(message) return logger def get_logger(level=None, name=None, filename=None, log_dir=None): """Create a logger or return the current one if already instantiated. Args: level (int): one of the logger.level constants. name (str): name of the logger. filename (str): name of the log file. log_dir (str, optional): directory of the log file. Defaults to settings.log_folder. Returns: logging.Logger: a Logger """ if isinstance(log_dir, str): log_dir = Path(log_dir) if level is None: level = settings.log_level if name is None: name = settings.log_name if filename is None: filename = settings.log_filename logger = lg.getLogger(name) # if a logger with this name is not already set up if not getattr(logger, "handler_set", None): # get today's date and construct a log filename todays_date = dt.datetime.today().strftime("%Y_%m_%d") if not log_dir: log_dir = settings.logs_folder log_filename = log_dir / "{}_{}.log".format(filename, todays_date) # if the logs folder does not already exist, create it if not log_dir.exists(): log_dir.makedirs_p() # create file handler and log formatter and set them up try: handler = lg.FileHandler(log_filename, encoding="utf-8") except: handler = lg.StreamHandler() formatter = lg.Formatter( "%(asctime)s [%(process)d] %(levelname)s - %(name)s - %(" "message)s" ) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(level) logger.handler_set = True return logger def close_logger(logger=None, level=None, name=None, filename=None, log_dir=None): """ Args: logger: level: name: filename: log_dir: """ if not logger: # try get logger by name logger = get_logger(level=level, name=name, filename=filename, log_dir=log_dir) handlers = logger.handlers[:] for handler in handlers: handler.close() logger.removeHandler(handler) def make_str(value): """Convert a passed-in value to unicode if Python 2, or string if Python 3. Args: value (any): the value to convert to unicode/string Returns: unicode or string """ try: # for python 2.x compatibility, use unicode return np.unicode(value) except NameError: # python 3.x has no unicode type, so if error, use str type return str(value) def load_umi_template_objects(filename): """Reads Args: filename (str): path of template file Returns: dict: Dict of umi_objects """ with open(filename) as f: umi_objects = json.load(f) return umi_objects def umi_template_object_to_dataframe(umi_dict, umi_object): """Returns flattened DataFrame of umi_objects Args: umi_dict (dict): dict of umi objects umi_object (str): umi_object name Returns: pandas.DataFrame: flattened DataFrame of umi_objects """ return json_normalize(umi_dict[umi_object]) def get_list_of_common_umi_objects(filename): """Returns list of common umi objects Args: filename (str): path to umi template file Returns: dict: Dict of common umi objects """ umi_objects = load_umi_template(filename) components = OrderedDict() for umi_dict in umi_objects: for x in umi_dict: components[x] = umi_dict[x].columns.tolist() return components def newrange(previous, following): """Takes the previous DataFrame and calculates a new Index range. Returns a DataFrame with a new index Args: previous (pandas.DataFrame): previous DataFrame following (pandas.DataFrame): follwoing DataFrame Returns: pandas.DataFrame: DataFrame with an incremented new index """ if not previous.empty: from_index = previous.iloc[[-1]].index.values + 1 to_index = from_index + len(following) following.index = np.arange(from_index, to_index) following.rename_axis("$id", inplace=True) return following else: # If previous dataframe is empty, return the orginal DataFrame return following def type_surface(row): """Takes a boundary and returns its corresponding umi-type Args: row: Returns: str: The umi-type of boundary """ # Floors if row["Surface_Type"] == "Floor": if row["Outside_Boundary_Condition"] == "Surface": return 3 if row["Outside_Boundary_Condition"] == "Ground": return 2 if row["Outside_Boundary_Condition"] == "Outdoors": return 4 else: return np.NaN # Roofs & Ceilings if row["Surface_Type"] == "Roof": return 1 if row["Surface_Type"] == "Ceiling": return 3 # Walls if row["Surface_Type"] == "Wall": if row["Outside_Boundary_Condition"] == "Surface": return 5 if row["Outside_Boundary_Condition"] == "Outdoors": return 0 return np.NaN def label_surface(row): """Takes a boundary and returns its corresponding umi-Category Args: row: """ # Floors if row["Surface_Type"] == "Floor": if row["Outside_Boundary_Condition"] == "Surface": return "Interior Floor" if row["Outside_Boundary_Condition"] == "Ground": return "Ground Floor" if row["Outside_Boundary_Condition"] == "Outdoors": return "Exterior Floor" else: return "Other" # Roofs & Ceilings if row["Surface_Type"] == "Roof": return "Roof" if row["Surface_Type"] == "Ceiling": return "Interior Floor" # Walls if row["Surface_Type"] == "Wall": if row["Outside_Boundary_Condition"] == "Surface": return "Partition" if row["Outside_Boundary_Condition"] == "Outdoors": return "Facade" return "Other" def layer_composition(row): """Takes in a series with $id and thickness values and return an array of dict of the form {'Material': {'$ref': ref}, 'thickness': thickness} If thickness is 'nan', it returns None. Returns (list): List of dicts Args: row (pandas.Series): a row """ array = [] ref = row["$id", "Outside_Layer"] thickness = row["Thickness", "Outside_Layer"] if np.isnan(ref): pass else: array.append({"Material": {"$ref": str(int(ref))}, "Thickness": thickness}) for i in range(2, len(row["$id"]) + 1): ref = row["$id", "Layer_{}".format(i)] if np.isnan(ref): pass else: thickness = row["Thickness", "Layer_{}".format(i)] array.append( {"Material": {"$ref": str(int(ref))}, "Thickness": thickness} ) return array def schedule_composition(row): """Takes in a series with $id and \*_ScheduleDay_Name values and return an array of dict of the form {'$ref': ref} Args: row (pandas.Series): a row Returns: list: list of dicts """ # Assumes 7 days day_schedules = [] days = [ "Monday_ScheduleDay_Name", "Tuesday_ScheduleDay_Name", "Wednesday_ScheduleDay_Name", "Thursday_ScheduleDay_Name", "Friday_ScheduleDay_Name", "Saturday_ScheduleDay_Name", "Sunday_ScheduleDay_Name", ] # With weekends last (as defined in # umi-template) # Let's start with the `Outside_Layer` for day in days: try: ref = row["$id", day] except: pass else: day_schedules.append({"$ref": str(int(ref))}) return day_schedules def year_composition(row): """Takes in a series with $id and ScheduleWeek_Name_{} values and return an array of dict of the form {'FromDay': fromday, 'FromMonth': frommonth, 'Schedule': {'$ref': int( ref)}, 'ToDay': today, 'ToMonth': tomonth} Args: row (pandas.Series): a row Returns: list: list of dicts """ parts = [] for i in range(1, 26 + 1): try: ref = row["$id", "ScheduleWeek_Name_{}".format(i)] except: pass else: if ~np.isnan(ref): fromday = row["Schedules", "Start_Day_{}".format(i)] frommonth = row["Schedules", "Start_Month_{}".format(i)] today = row["Schedules", "End_Day_{}".format(i)] tomonth = row["Schedules", "End_Month_{}".format(i)] parts.append( { "FromDay": fromday, "FromMonth": frommonth, "Schedule": {"$ref": str(int(ref))}, "ToDay": today, "ToMonth": tomonth, } ) return parts def date_transform(date_str): """Simple function transforming one-based hours (1->24) into zero-based hours (0->23) Args: date_str (str): a date string of the form 'HH:MM' Returns: datetime.datetime: datetime object """ if date_str[0:2] != "24": return datetime.strptime(date_str, "%H:%M") - timedelta(hours=1) return datetime.strptime("23:00", "%H:%M") def weighted_mean(series, df, weighting_variable): """Compute the weighted average while ignoring NaNs. Implements :func:`numpy.average`. Args: series (pandas.Series): the *series* on which to compute the mean. df (pandas.DataFrame): the *df* containing weighting variables. weighting_variable (str or list or tuple): Name of weights to use in *df*. If multiple values given, the values are multiplied together. Returns: numpy.ndarray: the weighted average """ # get non-nan values index = ~np.isnan(series.values.astype("float")) # Returns weights. If multiple `weighting_variable`, df.prod will take care # of multipling them together. if not isinstance(weighting_variable, list): weighting_variable = [weighting_variable] try: weights = df.loc[series.index, weighting_variable].astype("float").prod(axis=1) except Exception: raise # Try to average try: wa = np.average(series[index].astype("float"), weights=weights[index]) except ZeroDivisionError: log("Cannot aggregate empty series {}".format(series.name), lg.WARNING) return np.NaN except Exception: raise else: return wa def top(series, df, weighting_variable): """Compute the highest ranked value weighted by some other variable. Implements :func:`pandas.DataFrame.nlargest`. Args: series (pandas.Series): the *series* on which to compute the ranking. df (pandas.DataFrame): the *df* containing weighting variables. weighting_variable (str or list or tuple): Name of weights to use in *df*. If multiple values given, the values are multiplied together. Returns: numpy.ndarray: the weighted top ranked variable """ # Returns weights. If multiple `weighting_variable`, df.prod will take care # of multipling them together. if not isinstance(series, pd.Series): raise TypeError( '"top()" only works on Series, ' "not DataFrames\n{}".format(series) ) if not isinstance(weighting_variable, list): weighting_variable = [weighting_variable] try: idx_ = ( df.loc[series.index] .groupby(series.name) .apply(lambda x: safe_prod(x, df, weighting_variable)) ) if not idx_.empty: idx = idx_.nlargest(1).index else: log('No such names "{}"'.format(series.name)) return np.NaN except KeyError: log("Cannot aggregate empty series {}".format(series.name), lg.WARNING) return np.NaN except Exception: raise else: if idx.isnull().any(): return np.NaN else: return pd.to_numeric(idx, errors="ignore").values[0] def safe_prod(x, df, weighting_variable): """ Args: x: df: weighting_variable: """ df_ = df.loc[x.index, weighting_variable] if not df_.empty: return df_.astype("float").prod(axis=1).sum() else: return 0 def copy_file(files, where=None): """Handles a copy of test idf files Args: files (str or list): path(s) of the file(s) to copy where (str): path where to save the copy(ies) """ import shutil, os if isinstance(files, str): files = [files] files = {os.path.basename(k): k for k in files} # defaults to cache folder if where is None: where = settings.cache_folder for file in files: dst = os.path.join(where, file) output_folder = where if not os.path.isdir(output_folder): os.makedirs(output_folder) shutil.copyfile(files[file], dst) files[file] = dst return _unpack_tuple(list(files.values())) class EnergyPlusProcessError(Exception): """EnergyPlus Process call error""" def __init__(self, cmd, stderr, idf): """ Args: cmd: stderr: idf: """ super().__init__(stderr) self.cmd = cmd self.idf = idf self.stderr = stderr def __str__(self): """Override that only returns the stderr""" msg = ":\n".join([self.idf, self.stderr]) return msg class EnergyPlusVersionError(Exception): """EnergyPlus Version call error""" def __init__(self, idf_file, idf_version, ep_version): super(EnergyPlusVersionError, self).__init__(None) self.idf_file = idf_file self.idf_version = idf_version self.ep_version = ep_version def __str__(self): """Override that only returns the stderr""" if tuple(self.idf_version.split("-")) > tuple(self.ep_version.split("-")): compares_ = "higher" else: compares_ = "lower" msg = ( "The version of the idf file {} (v{}) is {} than the specified " "EnergyPlus version (v{}). Specify the default EnergyPlus version " "with :func:`config` that corresponds with the one installed on your machine" " or specify the version in related module functions, e.g. :func:`run_eplus`.".format( self.idf_file.basename(), self.idf_version, compares_, self.ep_version ) ) return msg @contextlib.contextmanager def cd(path): """ Args: path: """ log("initially inside {0}".format(os.getcwd())) CWD = os.getcwd() os.chdir(path) log("inside {0}".format(os.getcwd())) try: yield finally: os.chdir(CWD) log("finally inside {0}".format(os.getcwd())) def rmse(data, targets): """calculate rmse with target values # Todo : write de description of the args Args: data: targets: """ y = piecewise(data) predictions = y error = np.sqrt(np.mean((predictions - targets) ** 2)) return error def piecewise(data): """returns a piecewise function from an array of the form [hour1, hour2, ..., value1, value2, ...] # Todo : write de description of the args Args: data: """ nb = int(len(data) / 2) bins = data[0:nb] sf = data[nb:] x = np.linspace(0, 8760, 8760) # build condition array conds = [x < bins[0]] conds.extend([np.logical_and(x >= i, x < j) for i, j in zip(bins[0:], bins[1:])]) # build function array. This is the value of y when the condition is met. funcs = sf y = np.piecewise(x, conds, funcs) return y def checkStr(datafile, string, begin_line=0): """Find the first occurrence of a string and return its line number Returns: the list index containing the string Args: datafile (list-like): a list-like object string (str): the string to find in the txt file """ value = [] count = 0 for line in datafile: if count < begin_line: count += 1 continue count += 1 match = re.search(string, str(line)) if match: return count break def write_lines(file_path, lines): """Delete file if exists, then write lines in it Args: file_path (str): path of the file lines (list of str): lines to be written in file """ # Delete temp file if exists if os.path.exists(file_path): os.remove(file_path) # Save lines in temp file temp_idf_file = open(file_path, "w+") for line in lines: temp_idf_file.write("%s" % line) temp_idf_file.close() def load_umi_template(json_template): """ Args: json_template: Absolute or relative filepath to an umi json_template Returns: pandas.DataFrame: 17 DataFrames, one for each component groups """ if os.path.isfile(json_template): with open(json_template) as f: dicts = json.load(f, object_pairs_hook=OrderedDict) return [{key: json_normalize(value)} for key, value in dicts.items()] else: raise ValueError("File {} does not exist".format(json_template)) def check_unique_name(first_letters, count, name, unique_list, suffix=False): """Making sure new_name does not already exist Args: first_letters (str): string at the beginning of the name, giving a hint on what the variable is. count (int): increment to create a unique id in the name. name (str): name that was just created. To be verified that it is unique in this function. unique_list (list): list where unique names are stored. suffix (bool): Returns: new_name (str): name that is unique """ if suffix: while name in unique_list: count += 1 end_count = "%03d" % count name = name[:-3] + end_count else: while name in unique_list: count += 1 end_count = "%06d" % count name = first_letters + "_" + end_count return name, count def angle(v1, v2, acute=True): """Calculate the angle between 2 vectors Args: v1 (Vector3D): vector 1 v2 (Vector3D): vector 2 acute (bool): If True, give the acute angle, else gives the obtuse one. Returns: angle (float): angle between the 2 vectors in degree """ angle = np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))) if acute == True: return angle else: return 2 * np.pi - angle def float_round(num, n): """Makes sure a variable is a float and round it at "n" decimals Args: num (str, int, float): number we want to make sure is a float n (int): number of decimals Returns: num (float): a float rounded number """ num = float(num) num = round(num, n) return num def get_eplus_dirs(version=ep_version): """Returns EnergyPlus root folder for a specific version. Returns (Path): The folder path. Args: version (str): Version number in the form "9-2-0" to search for. """ from eppy.runner.run_functions import install_paths eplus_exe, eplus_weather = install_paths(version) return Path(eplus_exe).dirname() def warn_if_not_compatible(): """Checks if an EnergyPlus install is detected. If the latest version detected is higher than the one specified by translater, a warning is also raised. """ eplus_homes = get_eplus_basedirs() if not eplus_homes: warnings.warn( "No installation of EnergyPlus could be detected on this " "machine. Please install EnergyPlus from https://energyplus.net before using translater" ) if len(eplus_homes) > 1: # more than one installs warnings.warn( "There are more than one versions of EnergyPlus on this machine. Make " "sure you provide the appropriate version number when possible. " ) def get_eplus_basedirs(): """Returns a list of possible E+ install paths""" if platform.system() == "Windows": eplus_homes = Path("C:\\").glob("EnergyPlusV*") return eplus_homes elif platform.system() == "Linux": eplus_homes = Path("/usr/local/").glob("EnergyPlus-*") return eplus_homes elif platform.system() == "Darwin": eplus_homes = Path("/Applications").glob("EnergyPlus-*") return eplus_homes else: warnings.warn( "translater is not compatible with %s. It is only compatible " "with Windows, Linux or MacOs" % platform.system() ) def timeit(method): """Use this method as a decorator on a function to calculate the time it take to complete. Uses the :func:`log` method. Examples: >>> @timeit >>> def myfunc(): >>> return 'is a function' Args: method (function): A function. """ def timed(*args, **kwargs): ts = time.time() log("Executing %r..." % method.__qualname__) result = method(*args, **kwargs) te = time.time() tt = te - ts try: try: name = result.Name except: name = result.__qualname__ except: name = str(result) if tt > 0.001: log("Completed %r for %r in %.3f s" % (method.__qualname__, name, tt)) else: log( "Completed %r for %r in %.3f ms" % (method.__qualname__, name, tt * 1000) ) return result return timed def lcm(x, y): """This function takes two integers and returns the L.C.M. Args: x: y: """ # choose the greater number if x > y: greater = x else: greater = y while True: if (greater % x == 0) and (greater % y == 0): lcm = greater break greater += 1 return lcm def reduce(function, iterable, **attr): """ Args: function: iterable: **attr: """ it = iter(iterable) value = next(it) for element in it: value = function(value, element, **attr) return value def _unpack_tuple(x): """Unpacks one-element tuples for use as return values Args: x: """ if len(x) == 1: return x[0] else: return x def recursive_len(item): """Calculate the number of elements in nested list Args: item (list): list of lists (i.e. nested list) Returns: Total number of elements in nested list """ if type(item) == list: return sum(recursive_len(subitem) for subitem in item) else: return 1 def rotate(l, n): """Shift list elements to the left Args: l (list): list to rotate n (int): number to shift list to the left Returns: list: shifted list. """ return l[n:] + l[:n] def parallel_process(in_dict, function, processors=-1, use_kwargs=True): """A parallel version of the map function with a progress btr. Examples: >>> import translater as tr >>> files = ['tests/input_data/problematic/nat_ventilation_SAMPLE0.idf', >>> 'tests/input_data/regular/5ZoneNightVent1.idf'] >>> wf = 'tests/input_data/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw' >>> files = tr.copy_file(files) >>> rundict = {file: dict(eplus_file=file, weather_file=wf, >>> ep_version=ep_version, annual=True, >>> prep_outputs=True, expandobjects=True, >>> verbose='q', output_report='sql') >>> for file in files} >>> result = parallel_process(rundict, tr.run_eplus, use_kwargs=True) Args: in_dict (dict-like): A dictionary to iterate over. function (function): A python function to apply to the elements of in_dict processors (int): The number of cores to use use_kwargs (bool): If True, pass the kwargs as arguments to `function` . Returns: [function(array[0]), function(array[1]), ...] """ from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor, as_completed if processors == -1: processors = min(len(in_dict), multiprocessing.cpu_count()) if processors == 1: kwargs = { "desc": function.__name__, "total": len(in_dict), "unit": "runs", "unit_scale": True, "leave": True, } if use_kwargs: futures = {a: function(**in_dict[a]) for a in tqdm(in_dict, **kwargs)} else: futures = {a: function(in_dict[a]) for a in tqdm(in_dict, **kwargs)} else: with ProcessPoolExecutor(max_workers=processors) as pool: if use_kwargs: futures = {pool.submit(function, **in_dict[a]): a for a in in_dict} else: futures = {pool.submit(function, in_dict[a]): a for a in in_dict} kwargs = { "desc": function.__name__, "total": len(futures), "unit": "runs", "unit_scale": True, "leave": True, } # Print out the progress as tasks complete for f in tqdm(as_completed(futures), **kwargs): pass out = {} # Get the results from the futures. for key in futures: try: if processors > 1: out[futures[key]] = key.result() else: out[key] = futures[key] except Exception as e: log(str(e), lg.ERROR) out[futures[key]] = e return out