trnslator/translater/energyseries.py
2020-06-23 10:53:11 -04:00

1118 lines
32 KiB
Python

import copy
import logging as lg
import os
import time
import warnings
from datetime import timedelta
import numpy as np
import pandas as pd
import tsam.timeseriesaggregation as tsam
from matplotlib import pyplot as plt, cm
from matplotlib.colors import LightSource
from pandas import Series, DataFrame, concat, MultiIndex, date_range
from sklearn import preprocessing
import translater
from translater import log, rmse, piecewise, settings
class EnergySeries(Series):
"""A Series object designed to store energy related data."""
@property
def _constructor(self):
return EnergySeries
_metadata = [
"name",
"bin_edges_",
"bin_scaling_factors_",
"profile_type",
"base_year",
"frequency",
"units",
"sort_values",
"to_units",
"converted_",
"concurrent_sort_",
]
def __new__(
cls,
data,
frequency=None,
units=None,
profile_type="undefinded",
index=None,
dtype=None,
copy=True,
name=None,
fastpath=False,
base_year=2018,
normalize=False,
sort_values=False,
ascending=False,
archetypes=None,
concurrent_sort=False,
to_units=None,
use_timeindex=False,
):
"""
Args:
data:
frequency:
units:
profile_type:
index:
dtype:
copy:
name:
fastpath:
base_year:
normalize:
sort_values:
ascending:
archetypes:
concurrent_sort:
to_units:
use_timeindex:
"""
self = super(EnergySeries, cls).__new__(cls)
return self
def __init__(
self,
data,
frequency=None,
units=None,
profile_type="undefinded",
index=None,
dtype=None,
copy=True,
name=None,
fastpath=False,
base_year=2018,
normalize=False,
sort_values=False,
ascending=False,
archetypes=None,
concurrent_sort=False,
to_units=None,
use_timeindex=False,
):
"""
Args:
data:
frequency:
units:
profile_type:
index:
dtype:
copy:
name:
fastpath:
base_year:
normalize:
sort_values:
ascending:
archetypes:
concurrent_sort:
to_units:
use_timeindex:
"""
super(EnergySeries, self).__init__(
data=data, index=index, dtype=dtype, name=name, copy=copy, fastpath=fastpath
)
self.bin_edges_ = None
self.bin_scaling_factors_ = None
self.profile_type = profile_type
self.frequency = frequency
self.base_year = base_year
self.units = settings.unit_registry.parse_expression(units).units
self.archetypes = archetypes
self.to_units = settings.unit_registry.parse_expression(to_units).units
self.converted_ = False
self.concurrent_sort_ = concurrent_sort
# handle sorting of the data
if sort_values:
self.is_sorted = True
if concurrent_sort:
self.concurrent_sort(ascending=ascending, inplace=True)
else:
self.sort_values(ascending=ascending, inplace=True)
self.reset_index(drop=True, inplace=True)
else:
self.is_sorted = False
# handle archetype names
if isinstance(self.index, MultiIndex):
self.archetypes = list(set(self.index.get_level_values(level=0)))
else:
self.archetypes = None
# handle normalization
if normalize:
self.normalize(inplace=True)
# handle unit conversion
if to_units and units:
self.unit_conversion(to_units=to_units, inplace=True)
# handle DateTimeIndex
if index is None and use_timeindex:
start_date = str(self.base_year) + "0101"
if isinstance(self.index, MultiIndex):
newindex = self.index # todo: finish this
else:
newindex = pd.date_range(
start=start_date, freq=self.frequency, periods=len(self)
)
self.index = newindex
@classmethod
def from_sqlite(
cls,
df,
name=None,
base_year=2018,
units=None,
normalize=False,
sort_values=False,
ascending=False,
concurrent_sort=False,
to_units=None,
agg_func="sum",
):
"""Create a.
Args:
df (DataFrame):
name:
base_year:
units:
normalize:
sort_values:
ascending:
concurrent_sort:
to_units:
agg_func (callable): The aggregation function to use in the case
that multiple values have the same index value. If a function,
must either work when passed a DataFrame or when passed to
DataFrame.apply. For a DataFrame, can pass a dict, if the keys
are DataFrame column names.
Accepted Combinations are:
- string function name
- function
- list of functions
- dict of column names -> functions (or list of functions)
"""
index = pd.to_datetime(
{
"year": base_year,
"month": df.Month,
"day": df.Day,
"hour": df.Hour,
"minute": df.Minute,
}
)
# Adjust timeindex by timedelta
index -= df.Interval.apply(lambda x: timedelta(minutes=x))
index = pd.DatetimeIndex(index)
# get data
data = df.Value
data.index = index
units = [units] if units else set(df.Units)
if len(units) > 1:
raise ValueError("The DataFrame contains mixed units: {}".format(units))
else:
units = next(iter(units), None)
# group data by index value (level=0) using the agg_func
if agg_func:
grouped_Data = data.groupby(level=0).agg(agg_func)
else:
df["DateTimeIndex"] = index
grouped_Data = df.set_index(["DateTimeIndex", "Name"]).Value
# Since we create the index, use_timeindex must be false
return cls(
grouped_Data.values,
name=name,
units=units,
index=grouped_Data.index,
use_timeindex=False,
base_year=base_year,
normalize=normalize,
sort_values=sort_values,
ascending=ascending,
concurrent_sort=concurrent_sort,
to_units=to_units,
)
def unit_conversion(self, to_units=None, inplace=False):
"""returns the multiplier to convert units
Args:
to_units (pint.Unit):
inplace:
"""
reg = settings.unit_registry
if to_units is None:
to_units = self.to_units
else:
to_units = reg.parse_expression(to_units).units
cdata = reg.Quantity(self.values, self.units).to(to_units).m
result = self.apply(lambda x: x)
result.update(pd.Series(cdata, index=result.index))
result.__class__ = EnergySeries
result.converted_ = True
result.units = to_units
if inplace:
self._update_inplace(result)
self.__finalize__(result)
else:
return result
def concurrent_sort(self, ascending=False, inplace=False, level=0):
"""
Args:
ascending:
inplace:
level:
"""
if isinstance(self.index, MultiIndex):
concurrent = self.unstack(level=level)
concurrent_sum = concurrent.sum(axis=1)
sortedIdx = concurrent_sum.sort_values(ascending=ascending).index
result = concurrent.loc[sortedIdx, :]
result.index = concurrent.index
result = result.stack().swaplevel()
if inplace:
self.update(result)
self.__finalize__(result)
else:
return result # todo: make sure results has all the metadata
def normalize(self, feature_range=(0, 1), inplace=False):
"""Returns a normalized EnergySeries
Args:
feature_range:
inplace:
"""
scaler = preprocessing.MinMaxScaler(feature_range=feature_range)
if self.archetypes:
result = concat(
{
name: Series(
scaler.fit_transform(sub.values.reshape(-1, 1)).ravel()
)
for name, sub in self.groupby(level=0)
}
).sort_index()
result = self._constructor(result)
else:
result = Series(scaler.fit_transform(self.values.reshape(-1, 1)).ravel())
result = self._constructor(result)
result.units = settings.unit_registry.dimensionless
if inplace:
self._update_inplace(result)
else:
return result # todo: make sure result has all the metadata
def ldc_source(self, SCOPH=4, SCOPC=4):
"""Returns the Load Duration Curve from the source side of theoretical
Heat Pumps
Args:
SCOPH: Seasonal COP in Heating
SCOPC: Seasonal COP in Cooling
Returns:
(EnergySeries) Load Duration Curve
"""
result = self.ldc.apply(
lambda x: x * (1 - 1 / SCOPH) if x > 0 else x * (1 + 1 / SCOPC)
)
return result
def source_side(self, SCOPH=None, SCOPC=None):
"""Returns the Source Side EnergySeries given a Seasonal COP. Negative
values are considered like Cooling Demand.
Args:
SCOPH: Seasonal COP in Heating
SCOPC: Seasonal COP in Cooling
Returns:
(EnergySeries) Load Duration Curve
"""
if SCOPC or SCOPH:
result = self.apply(
lambda x: x * (1 - 1 / SCOPH) if SCOPH else x * (1 + 1 / SCOPC)
)
return result
else:
raise ValueError("Please provide a SCOPH or a SCOPC")
def discretize_tsam(
self,
resolution=None,
noTypicalPeriods=10,
hoursPerPeriod=24,
clusterMethod="hierarchical",
evalSumPeriods=False,
sortValues=False,
sameMean=False,
rescaleClusterPeriods=True,
weightDict=None,
extremePeriodMethod="None",
solver="glpk",
roundOutput=None,
addPeakMin=None,
addPeakMax=None,
addMeanMin=None,
addMeanMax=None,
):
"""uses tsam
Args:
resolution:
noTypicalPeriods:
hoursPerPeriod:
clusterMethod:
evalSumPeriods:
sortValues:
sameMean:
rescaleClusterPeriods:
weightDict:
extremePeriodMethod:
solver:
roundOutput:
addPeakMin:
addPeakMax:
addMeanMin:
addMeanMax:
"""
try:
import tsam.timeseriesaggregation as tsam
except ImportError:
raise ImportError("tsam is required for discretize_tsam()")
if not isinstance(self.index, pd.DatetimeIndex):
raise TypeError("To use tsam, index of series must be a " "DateTimeIndex")
if isinstance(self, Series):
timeSeries = pd.DataFrame(self)
else:
timeSeries = self.copy()
agg = tsam.TimeSeriesAggregation(
timeSeries,
resolution=resolution,
noTypicalPeriods=noTypicalPeriods,
hoursPerPeriod=hoursPerPeriod,
clusterMethod=clusterMethod,
evalSumPeriods=evalSumPeriods,
sortValues=sortValues,
sameMean=sameMean,
rescaleClusterPeriods=rescaleClusterPeriods,
weightDict=weightDict,
extremePeriodMethod=extremePeriodMethod,
solver=solver,
roundOutput=roundOutput,
addPeakMin=addPeakMin,
addPeakMax=addPeakMax,
addMeanMin=addMeanMin,
addMeanMax=addMeanMax,
)
agg.createTypicalPeriods()
results = agg.predictOriginalData()
results = EnergySeries(results.iloc[:, 0])
# results._internal_names += agg.clusterOrder
return results.__finalize__(self)
def discretize(self, n_bins=3, inplace=False):
"""Retruns a discretized pandas.Series
Args:
n_bins (int): Number of bins or steps to discretize the function
inplace (bool): if True, perform operation in-place
"""
try:
from scipy.optimize import minimize
from itertools import chain
except ImportError:
raise ImportError(
"The sklearn package must be installed to " "use this optional feature."
)
if self.archetypes:
# if multiindex, group and apply operation on each group.
# combine at the end
results = {}
edges = {}
ampls = {}
for name, sub in self.groupby(level=0):
hour_of_min = sub.time_at_min[1]
sf = [1 / (i * 1.01) for i in range(1, n_bins + 1)]
sf.extend([sub.min()])
sf_bounds = [(0, sub.max()) for i in range(0, n_bins + 1)]
hours = [
hour_of_min - hour_of_min * 1 / (i * 1.01)
for i in range(1, n_bins + 1)
]
# Todo hours need to work fow datetime index
hours.extend([len(sub)])
hours_bounds = [(0, len(sub)) for i in range(0, n_bins + 1)]
start_time = time.time()
log("discretizing EnergySeries {}".format(name), lg.DEBUG)
res = minimize(
rmse,
np.array(hours + sf),
args=(sub.values),
method="L-BFGS-B",
bounds=hours_bounds + sf_bounds,
options=dict(disp=True),
)
log(
"Completed discretization in {:,.2f} seconds".format(
time.time() - start_time
),
lg.DEBUG,
)
edges[name] = res.x[0 : n_bins + 1]
ampls[name] = res.x[n_bins + 1 :]
results[name] = Series(piecewise(res.x))
self.bin_edges_ = Series(edges).apply(Series)
self.bin_scaling_factors_ = DataFrame(ampls)
result = concat(results)
else:
hour_of_min = self.time_at_min
sf = [1 / (i * 1.01) for i in range(1, n_bins + 1)]
sf.extend([self.min()])
sf_bounds = [(0, self.max()) for i in range(0, n_bins + 1)]
hours = [
hour_of_min - hour_of_min * 1 / (i * 1.01) for i in range(1, n_bins + 1)
]
hours.extend([len(self)])
hours_bounds = [(0, len(self)) for i in range(0, n_bins + 1)]
start_time = time.time()
# log('discretizing EnergySeries {}'.format(name), lg.DEBUG)
res = minimize(
rmse,
np.array(hours + sf),
args=(self.values),
method="L-BFGS-B",
bounds=hours_bounds + sf_bounds,
options=dict(disp=True),
)
log(
"Completed discretization in {:,.2f} seconds".format(
time.time() - start_time
),
lg.DEBUG,
)
edges = res.x[0 : n_bins + 1]
ampls = res.x[n_bins + 1 :]
result = Series(piecewise(res.x))
bin_edges = Series(edges).apply(Series)
self.bin_edges_ = bin_edges
bin_edges.loc[-1, 0] = 0
bin_edges.sort_index(inplace=True)
bin_edges = bin_edges.diff().dropna()
bin_edges = bin_edges.round()
self.bin_scaling_factors_ = DataFrame(
{"duration": bin_edges[0], "scaling factor": ampls}
)
self.bin_scaling_factors_.index = np.round(edges).astype(int)
if inplace:
self.update(result)
self.__class__ = EnergySeries
self.__finalize__(result)
else:
result.__class__ = EnergySeries
return result.__finalize__(self)
def unstack(self, level=-1, fill_value=None):
"""
Args:
level:
fill_value:
"""
from pandas.core.reshape.reshape import unstack
result = unstack(self, level, fill_value)
result.__class__ = translater.EnergyDataFrame
return result.__finalize__(self)
def stack(self, level=-1, dropna=True):
"""
Args:
level:
dropna:
"""
from pandas.core.reshape.reshape import stack, stack_multiple
if isinstance(level, (tuple, list)):
result = stack_multiple(self, level, dropna=dropna)
return self.__finalize__(result)
else:
result = stack(self, level, dropna=dropna)
return self.__finalize__(result)
def plot3d(self, *args, **kwargs):
"""Generate a plot of the EnergySeries.
Wraps the ``plot_energyseries()`` function, and documentation is
copied from there.
Args:
*args:
**kwargs:
"""
return plot_energyseries(self, *args, **kwargs)
def plot2d(self, *args, **kwargs):
"""
Args:
*args:
**kwargs:
"""
return plot_energyseries_map(self, **kwargs)
# @property
# def units(self):
# return self.units.units
@property
def p_max(self):
if isinstance(self.index, MultiIndex):
return self.groupby(level=0).max()
else:
return self.max()
@property
def monthly(self):
if isinstance(self.index, MultiIndex):
return self.groupby(level=0).max()
else:
datetimeindex = date_range(
freq=self.frequency,
start="{}-01-01".format(self.base_year),
periods=self.size,
)
self_copy = self.copy()
self_copy.index = datetimeindex
self_copy = self_copy.resample("M").mean()
self_copy.frequency = "M"
return EnergySeries(self_copy, frequency="M", units=self.units)
@property
def capacity_factor(self):
max = self.max()
mean = self.mean()
return mean / max
@property
def bin_edges(self):
return self.bin_edges_
@property
def time_at_min(self):
return self.idxmin()
@property
def bin_scaling_factors(self):
return self.bin_scaling_factors_
@property
def duration_scaling_factor(self):
return list(map(tuple, self.bin_scaling_factors.values))
@property
def ldc(self):
nb_points = len(self)
newdata = self.sort_values(ascending=False).reset_index(drop=True)
return newdata.__finalize__(self)
@property
def nseries(self):
if self.data.ndim == 1:
return 1
else:
return self.data.shape[1]
def save_and_show(
fig, ax, save, show, close, filename, file_format, dpi, axis_off, extent
):
"""Save a figure to disk and show it, as specified.
Args:
fig (matplotlib.figure.Figure): the figure
ax (matplotlib.axes.Axes or list(matplotlib.axes.Axes)): the axes
save (bool): whether to save the figure to disk or not
show (bool): whether to display the figure or not
close (bool): close the figure (only if show equals False) to prevent
display
filename (string): the name of the file to save
file_format (string): the format of the file to save (e.g., 'jpg',
'png', 'svg')
dpi (int): the resolution of the image file if saving (Dots per inch)
axis_off (bool): if True matplotlib axis was turned off by plot_graph so
constrain the saved figure's extent to the interior of the axis
extent:
Returns:
(tuple) fig, ax
"""
# save the figure if specified
if save:
start_time = time.time()
# create the save folder if it doesn't already exist
if not os.path.exists(settings.imgs_folder):
os.makedirs(settings.imgs_folder)
path_filename = os.path.join(
settings.imgs_folder, os.extsep.join([filename, file_format])
)
if not isinstance(ax, (np.ndarray, list)):
ax = [ax]
if file_format == "svg":
for ax in ax:
# if the file_format is svg, prep the fig/ax a bit for saving
ax.axis("off")
ax.set_position([0, 0, 1, 1])
ax.patch.set_alpha(0.0)
fig.patch.set_alpha(0.0)
fig.savefig(
path_filename,
bbox_inches=0,
format=file_format,
facecolor=fig.get_facecolor(),
transparent=True,
)
else:
if extent is None:
if len(ax) == 1:
if axis_off:
for ax in ax:
# if axis is turned off, constrain the saved
# figure's extent to the interior of the axis
extent = ax.get_window_extent().transformed(
fig.dpi_scale_trans.inverted()
)
else:
extent = "tight"
fig.savefig(
path_filename,
dpi=dpi,
bbox_inches=extent,
format=file_format,
facecolor=fig.get_facecolor(),
transparent=True,
)
log(
"Saved the figure to disk in {:,.2f} seconds".format(
time.time() - start_time
)
)
# show the figure if specified
if show:
start_time = time.time()
plt.show()
# fig.show()
log("Showed the plot in {:,.2f} seconds".format(time.time() - start_time))
# if show=False, close the figure if close=True to prevent display
elif close:
plt.close()
return fig, ax
def plot_energyseries(
energy_series,
kind="polygon",
axis_off=True,
cmap=None,
fig_height=None,
fig_width=6,
show=True,
view_angle=-60,
save=False,
close=False,
dpi=300,
file_format="png",
color=None,
axes=None,
vmin=None,
vmax=None,
filename=None,
timeStepsPerPeriod=24,
**kwargs
):
"""
Args:
energy_series (EnergySeries):
kind (str):
axis_off (bool):
cmap:
fig_height (float):
fig_width (float):
show (bool):
view_angle (float):
save (bool):
close (bool):
dpi (int):
file_format (str):
color (str):
axes:
vmin (float):
vmax (float):
filename (str):
timeStepsPerPeriod (int): The number of discrete timesteps which
describe one period.
**kwargs:
"""
if energy_series.empty:
warnings.warn(
"The EnergyProgile you are attempting to plot is "
"empty. Nothing has been displayed.",
UserWarning,
)
return axes
import matplotlib.pyplot as plt
# noinspection PyUnresolvedReferences
from mpl_toolkits.mplot3d import Axes3D
if isinstance(energy_series.index, pd.MultiIndex):
groups = energy_series.groupby(level=0)
nax = len(groups)
else:
nax = 1
groups = [("unnamed", energy_series)]
if fig_height is None:
fig_height = fig_width * nax
# Set up plot
fig, axes = plt.subplots(
nax,
1,
subplot_kw=dict(projection="3d"),
figsize=(fig_width, fig_height),
dpi=dpi,
)
if not isinstance(axes, np.ndarray):
axes = [axes]
for ax, (name, profile) in zip(axes, groups):
values = profile.values
vmin = values.min() if vmin is None else vmin
vmax = values.max() if vmax is None else vmax
if kind == "polygon":
import tsam.timeseriesaggregation as tsam
z, _ = tsam.unstackToPeriods(profile, timeStepsPerPeriod=timeStepsPerPeriod)
nrows, ncols = z.shape
xs = z.columns
zs = z.index.values
verts = []
for i in zs:
ys = z.iloc[int(i), :]
verts.append(_polygon_under_graph(xs, ys))
_plot_poly_collection(
ax,
verts,
zs,
edgecolors=kwargs.get("edgecolors", None),
facecolors=kwargs.get("facecolors", None),
linewidths=kwargs.get("linewidths", None),
cmap=cmap,
)
elif kind == "surface":
import tsam.timeseriesaggregation as tsam
z, _ = tsam.unstackToPeriods(profile, timeStepsPerPeriod=timeStepsPerPeriod)
nrows, ncols = z.shape
x = z.columns
y = z.index.values
x, y = np.meshgrid(x, y)
_plot_surface(ax, x, y, z.values, cmap=cmap, **kwargs)
elif kind == "contour":
import tsam.timeseriesaggregation as tsam
z, _ = tsam.unstackToPeriods(profile, timeStepsPerPeriod=timeStepsPerPeriod)
nrows, ncols = z.shape
x = z.columns
y = z.index.values
x, y = np.meshgrid(x, y)
_plot_contour(ax, x, y, z.values, cmap=cmap, **kwargs)
else:
raise NameError('plot kind "{}" is not supported'.format(kind))
if filename is None:
filename = "unnamed"
# set the extent of the figure
ax.set_xlim3d(-1, ncols)
ax.set_xlabel(kwargs.get("xlabel", "hour of day"))
ax.set_ylim3d(-1, nrows)
ax.set_ylabel(kwargs.get("ylabel", "day of year"))
ax.set_zlim3d(vmin, vmax)
z_label = "{} [{:~P}]".format(
energy_series.name if energy_series.name is not None else "Z",
energy_series.units,
)
ax.set_zlabel(z_label)
# configure axis appearance
xaxis = ax.xaxis
yaxis = ax.yaxis
zaxis = ax.zaxis
xaxis.get_major_formatter().set_useOffset(False)
yaxis.get_major_formatter().set_useOffset(False)
zaxis.get_major_formatter().set_useOffset(False)
# if axis_off, turn off the axis display set the margins to zero and
# point the ticks in so there's no space around the plot
if axis_off:
ax.axis("off")
ax.margins(0)
ax.tick_params(which="both", direction="in")
xaxis.set_visible(False)
yaxis.set_visible(False)
zaxis.set_visible(False)
fig.canvas.draw()
if view_angle is not None:
ax.view_init(30, view_angle)
ax.set_proj_type(kwargs.get("proj_type", "persp"))
fig.canvas.draw()
fig, axes = save_and_show(
fig=fig,
ax=axes,
save=save,
show=show,
close=close,
filename=filename,
file_format=file_format,
dpi=dpi,
axis_off=axis_off,
extent=None,
)
return fig, axes
def plot_energyseries_map(
data,
periodlength=24,
subplots=False,
vmin=None,
vmax=None,
axis_off=True,
cmap="RdBu",
fig_height=None,
fig_width=6,
show=True,
view_angle=-60,
save=False,
close=False,
dpi=300,
file_format="png",
color=None,
ax=None,
filename="untitled",
extent="tight",
sharex=False,
sharey=False,
layout=None,
layout_type="vertical",
**kwargs
):
"""
Args:
data (EnergySeries or EnergyDataFrame):
periodlength:
subplots:
vmin:
vmax:
axis_off:
cmap:
fig_height:
fig_width:
show:
view_angle:
save:
close:
dpi:
file_format:
color:
ax:
filename:
extent:
sharex:
sharey:
layout:
layout_type:
**kwargs:
"""
if fig_height is None:
fig_height = fig_width / 3
figsize = (fig_width, fig_height)
if not ax:
if subplots:
if isinstance(data, EnergySeries):
data = data.unstack(level=0)
n = data.shape[1]
else:
n = 1
fig, axes = plt.subplots(
nrows=n, ncols=1, figsize=(fig_width, fig_height), dpi=dpi
)
else:
fig = ax.get_figure()
if figsize is not None:
fig.set_size_inches(figsize)
axes = ax
stacked, timeindex = tsam.unstackToPeriods(copy.deepcopy(data), periodlength)
cmap = plt.get_cmap(cmap)
im = axes.imshow(
stacked.values.T, interpolation="nearest", vmin=vmin, vmax=vmax, cmap=cmap
)
axes.set_aspect("auto")
axes.set_ylabel("Hour")
plt.xlabel("Day")
# fig.subplots_adjust(right=1.1)
cbar = fig.colorbar(im, ax=axes)
cbar.set_label("{} [{:~P}]".format(data.name, data.units))
fig, axes = save_and_show(
fig, axes, save, show, close, filename, file_format, dpi, axis_off, extent
)
return fig, axes
def _plot_poly_collection(
ax, verts, zs=None, color=None, cmap=None, vmin=None, vmax=None, **kwargs
):
"""
Args:
ax:
verts:
zs:
color:
cmap:
vmin:
vmax:
**kwargs:
"""
from matplotlib.collections import PolyCollection
# if None in zs:
# zs = None
# color=None overwrites specified facecolor/edgecolor with default color
if color is not None:
kwargs["color"] = color
import matplotlib as mpl
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
poly = PolyCollection(verts, **kwargs)
if zs is not None:
poly.set_array(np.asarray(zs))
poly.set_cmap(cmap)
poly.set_clim(vmin, vmax)
ax.add_collection3d(poly, zs=zs, zdir="y")
# ax.autoscale_view()
return poly
def _plot_surface(ax, x, y, z, cmap=None, **kwargs):
"""
Args:
ax:
x:
y:
z:
cmap:
**kwargs:
"""
if cmap is None:
cmap = cm.gist_earth
ls = LightSource(270, 45)
# To use a custom hillshading mode, override the built-in shading and pass
# in the rgb colors of the shaded surface calculated from "shade".
rgb = ls.shade(z, cmap=cm.get_cmap(cmap), vert_exag=0.1, blend_mode="soft")
surf = ax.plot_surface(
x,
y,
z,
rstride=1,
cstride=1,
facecolors=rgb,
linewidth=0,
antialiased=False,
shade=False,
**kwargs
)
return surf
def _plot_contour(ax, x, y, z, cmap=None, **kwargs):
"""
Args:
ax:
x:
y:
z:
cmap:
**kwargs:
"""
if cmap is None:
cmap = cm.gist_earth
surf = ax.contour3D(x, y, z, 150, cmap=cmap, **kwargs)
return surf
def _polygon_under_graph(xlist, ylist):
"""Construct the vertex list which defines the polygon filling the space
under the (xlist, ylist) line graph. Assumes the xs are in ascending order.
Args:
xlist:
ylist:
"""
return [(xlist[0], 0.0), *zip(xlist, ylist), (xlist[-1], 0.0)]
EnergySeries.plot3d.__doc__ = plot_energyseries.__doc__
EnergySeries.plot2d.__doc__ = plot_energyseries_map.__doc__