mirror of
https://github.com/louisleroy5/trnslator.git
synced 2024-11-15 00:30:31 -05:00
238 lines
6.3 KiB
Python
238 lines
6.3 KiB
Python
import matplotlib.pyplot as plt
|
|
from pandas import DataFrame, Series, DatetimeIndex
|
|
|
|
from translator import EnergySeries, settings
|
|
from translator.energyseries import plot_energyseries_map, save_and_show
|
|
|
|
|
|
class EnergyDataFrame(DataFrame):
|
|
"""An EnergyDataFrame object is a pandas.DataFrame that has energy related
|
|
data. In addition to the standard DataFrame constructor arguments,
|
|
EnergyDataFrame also accepts the following keyword arguments:
|
|
|
|
|
|
"""
|
|
|
|
_metadata = [
|
|
"profile_type",
|
|
"base_year",
|
|
"frequency",
|
|
"units",
|
|
"sort_values",
|
|
"to_units",
|
|
]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
from_units = kwargs.pop("units", None)
|
|
super(EnergyDataFrame, self).__init__(*args, **kwargs)
|
|
self.from_units = from_units
|
|
if from_units is not None:
|
|
self.set_unit(from_units, inplace=True)
|
|
|
|
def set_unit(self, from_unit, inplace):
|
|
ureg = settings.unit_registry
|
|
|
|
if inplace:
|
|
frame = self
|
|
else:
|
|
frame = self.copy()
|
|
|
|
self.from_units = ureg.parse_expression(from_unit)
|
|
|
|
if not inplace:
|
|
return frame
|
|
|
|
def plot2d(self, **kwargs):
|
|
return plot_energydataframe_map(self, **kwargs)
|
|
|
|
@property
|
|
def _constructor(self):
|
|
return EnergyDataFrame
|
|
|
|
@property
|
|
def nseries(self):
|
|
if self._data.ndim == 1:
|
|
return 1
|
|
else:
|
|
return self._data.shape[0]
|
|
|
|
def __getitem__(self, key):
|
|
"""
|
|
return an EnergySeries or an EnergyDataFrame with propagated metadata.
|
|
"""
|
|
result = super(EnergyDataFrame, self).__getitem__(key)
|
|
if isinstance(result, Series):
|
|
result.__class__ = EnergySeries
|
|
elif isinstance(result, DataFrame):
|
|
result.__class__ = EnergyDataFrame
|
|
return result.__finalize__(self)
|
|
|
|
def stack(self, level=-1, dropna=True):
|
|
from pandas.core.reshape.reshape import stack, stack_multiple
|
|
|
|
if isinstance(level, (tuple, list)):
|
|
result = stack_multiple(self, level, dropna=dropna)
|
|
return result.__finalize__(self)
|
|
else:
|
|
result = stack(self, level, dropna=dropna)
|
|
return result.__finalize__(self)
|
|
|
|
def discretize_tsam(
|
|
self,
|
|
resolution=None,
|
|
noTypicalPeriods=10,
|
|
hoursPerPeriod=24,
|
|
clusterMethod="hierarchical",
|
|
evalSumPeriods=False,
|
|
sortValues=False,
|
|
sameMean=False,
|
|
rescaleClusterPeriods=True,
|
|
weightDict=None,
|
|
extremePeriodMethod="None",
|
|
solver="glpk",
|
|
roundOutput=None,
|
|
addPeakMin=None,
|
|
addPeakMax=None,
|
|
addMeanMin=None,
|
|
addMeanMax=None,
|
|
):
|
|
"""uses tsam"""
|
|
try:
|
|
import tsam.timeseriesaggregation as tsam
|
|
except ImportError:
|
|
raise ImportError("tsam is required for discretize_tsam()")
|
|
if not isinstance(self.index, DatetimeIndex):
|
|
raise TypeError("To use tsam, index of series must be a " "DateTimeIndex")
|
|
timeSeries = self.copy()
|
|
agg = tsam.TimeSeriesAggregation(
|
|
timeSeries,
|
|
resolution=resolution,
|
|
noTypicalPeriods=noTypicalPeriods,
|
|
hoursPerPeriod=hoursPerPeriod,
|
|
clusterMethod=clusterMethod,
|
|
evalSumPeriods=evalSumPeriods,
|
|
sortValues=sortValues,
|
|
sameMean=sameMean,
|
|
rescaleClusterPeriods=rescaleClusterPeriods,
|
|
weightDict=weightDict,
|
|
extremePeriodMethod=extremePeriodMethod,
|
|
solver=solver,
|
|
roundOutput=roundOutput,
|
|
addPeakMin=addPeakMin,
|
|
addPeakMax=addPeakMax,
|
|
addMeanMin=addMeanMin,
|
|
addMeanMax=addMeanMax,
|
|
)
|
|
|
|
agg.createTypicalPeriods()
|
|
results = agg.predictOriginalData()
|
|
results = EnergyDataFrame(results)
|
|
results.__dict__["agg"] = agg
|
|
return results.__finalize__(self)
|
|
|
|
|
|
def plot_energydataframe_map(
|
|
data,
|
|
periodlength=24,
|
|
subplots=False,
|
|
vmin=None,
|
|
vmax=None,
|
|
axis_off=True,
|
|
cmap="RdBu",
|
|
fig_height=None,
|
|
fig_width=6,
|
|
show=True,
|
|
view_angle=-60,
|
|
save=False,
|
|
close=False,
|
|
dpi=300,
|
|
file_format="png",
|
|
color=None,
|
|
ax=None,
|
|
filename="untitled",
|
|
extent="tight",
|
|
sharex=True,
|
|
sharey=True,
|
|
layout=None,
|
|
layout_type="vertical",
|
|
**kwargs
|
|
):
|
|
if fig_height is None:
|
|
fig_height = fig_width / 3
|
|
figsize = (fig_width, fig_height)
|
|
nseries = data.nseries
|
|
fig, axes = _setup_subplots(
|
|
subplots, nseries, sharex, sharey, figsize, ax, layout, layout_type
|
|
)
|
|
cols = data.columns
|
|
for ax, col in zip(axes, cols):
|
|
plot_energyseries_map(
|
|
data[col],
|
|
periodlength=periodlength,
|
|
subplots=subplots,
|
|
vmin=vmin,
|
|
vmax=vmax,
|
|
axis_off=axis_off,
|
|
cmap=cmap,
|
|
fig_height=fig_height,
|
|
fig_width=fig_width,
|
|
show=False,
|
|
save=False,
|
|
close=False,
|
|
dpi=dpi,
|
|
file_format=file_format,
|
|
color=color,
|
|
ax=ax,
|
|
filename=filename,
|
|
extent=extent,
|
|
sharex=sharex,
|
|
sharey=sharey,
|
|
layout=layout,
|
|
layout_type=layout_type,
|
|
**kwargs
|
|
)
|
|
|
|
fig, axes = save_and_show(
|
|
fig, axes, save, show, close, filename, file_format, dpi, axis_off, extent
|
|
)
|
|
|
|
return fig, axes
|
|
|
|
|
|
def _setup_subplots(
|
|
subplots,
|
|
nseries,
|
|
sharex=False,
|
|
sharey=False,
|
|
figsize=None,
|
|
ax=None,
|
|
layout=None,
|
|
layout_type="vertical",
|
|
):
|
|
"""prepares the subplots"""
|
|
from pandas.plotting._tools import _subplots, _flatten
|
|
|
|
if subplots:
|
|
fig, axes = _subplots(
|
|
naxes=nseries,
|
|
sharex=sharex,
|
|
sharey=sharey,
|
|
figsize=figsize,
|
|
ax=ax,
|
|
layout=layout,
|
|
layout_type=layout_type,
|
|
)
|
|
else:
|
|
if ax is None:
|
|
fig = plt.figure(figsize=figsize)
|
|
axes = fig.add_subplot(111)
|
|
else:
|
|
fig = ax.get_figure()
|
|
if figsize is not None:
|
|
fig.set_size_inches(figsize)
|
|
axes = ax
|
|
|
|
axes = _flatten(axes)
|
|
|
|
return fig, axes
|