trnslator/translater/energydataframe.py
2020-06-23 10:40:49 -04:00

238 lines
6.3 KiB
Python

import matplotlib.pyplot as plt
from pandas import DataFrame, Series, DatetimeIndex
from translator import EnergySeries, settings
from translator.energyseries import plot_energyseries_map, save_and_show
class EnergyDataFrame(DataFrame):
"""An EnergyDataFrame object is a pandas.DataFrame that has energy related
data. In addition to the standard DataFrame constructor arguments,
EnergyDataFrame also accepts the following keyword arguments:
"""
_metadata = [
"profile_type",
"base_year",
"frequency",
"units",
"sort_values",
"to_units",
]
def __init__(self, *args, **kwargs):
from_units = kwargs.pop("units", None)
super(EnergyDataFrame, self).__init__(*args, **kwargs)
self.from_units = from_units
if from_units is not None:
self.set_unit(from_units, inplace=True)
def set_unit(self, from_unit, inplace):
ureg = settings.unit_registry
if inplace:
frame = self
else:
frame = self.copy()
self.from_units = ureg.parse_expression(from_unit)
if not inplace:
return frame
def plot2d(self, **kwargs):
return plot_energydataframe_map(self, **kwargs)
@property
def _constructor(self):
return EnergyDataFrame
@property
def nseries(self):
if self._data.ndim == 1:
return 1
else:
return self._data.shape[0]
def __getitem__(self, key):
"""
return an EnergySeries or an EnergyDataFrame with propagated metadata.
"""
result = super(EnergyDataFrame, self).__getitem__(key)
if isinstance(result, Series):
result.__class__ = EnergySeries
elif isinstance(result, DataFrame):
result.__class__ = EnergyDataFrame
return result.__finalize__(self)
def stack(self, level=-1, dropna=True):
from pandas.core.reshape.reshape import stack, stack_multiple
if isinstance(level, (tuple, list)):
result = stack_multiple(self, level, dropna=dropna)
return result.__finalize__(self)
else:
result = stack(self, level, dropna=dropna)
return result.__finalize__(self)
def discretize_tsam(
self,
resolution=None,
noTypicalPeriods=10,
hoursPerPeriod=24,
clusterMethod="hierarchical",
evalSumPeriods=False,
sortValues=False,
sameMean=False,
rescaleClusterPeriods=True,
weightDict=None,
extremePeriodMethod="None",
solver="glpk",
roundOutput=None,
addPeakMin=None,
addPeakMax=None,
addMeanMin=None,
addMeanMax=None,
):
"""uses tsam"""
try:
import tsam.timeseriesaggregation as tsam
except ImportError:
raise ImportError("tsam is required for discretize_tsam()")
if not isinstance(self.index, DatetimeIndex):
raise TypeError("To use tsam, index of series must be a " "DateTimeIndex")
timeSeries = self.copy()
agg = tsam.TimeSeriesAggregation(
timeSeries,
resolution=resolution,
noTypicalPeriods=noTypicalPeriods,
hoursPerPeriod=hoursPerPeriod,
clusterMethod=clusterMethod,
evalSumPeriods=evalSumPeriods,
sortValues=sortValues,
sameMean=sameMean,
rescaleClusterPeriods=rescaleClusterPeriods,
weightDict=weightDict,
extremePeriodMethod=extremePeriodMethod,
solver=solver,
roundOutput=roundOutput,
addPeakMin=addPeakMin,
addPeakMax=addPeakMax,
addMeanMin=addMeanMin,
addMeanMax=addMeanMax,
)
agg.createTypicalPeriods()
results = agg.predictOriginalData()
results = EnergyDataFrame(results)
results.__dict__["agg"] = agg
return results.__finalize__(self)
def plot_energydataframe_map(
data,
periodlength=24,
subplots=False,
vmin=None,
vmax=None,
axis_off=True,
cmap="RdBu",
fig_height=None,
fig_width=6,
show=True,
view_angle=-60,
save=False,
close=False,
dpi=300,
file_format="png",
color=None,
ax=None,
filename="untitled",
extent="tight",
sharex=True,
sharey=True,
layout=None,
layout_type="vertical",
**kwargs
):
if fig_height is None:
fig_height = fig_width / 3
figsize = (fig_width, fig_height)
nseries = data.nseries
fig, axes = _setup_subplots(
subplots, nseries, sharex, sharey, figsize, ax, layout, layout_type
)
cols = data.columns
for ax, col in zip(axes, cols):
plot_energyseries_map(
data[col],
periodlength=periodlength,
subplots=subplots,
vmin=vmin,
vmax=vmax,
axis_off=axis_off,
cmap=cmap,
fig_height=fig_height,
fig_width=fig_width,
show=False,
save=False,
close=False,
dpi=dpi,
file_format=file_format,
color=color,
ax=ax,
filename=filename,
extent=extent,
sharex=sharex,
sharey=sharey,
layout=layout,
layout_type=layout_type,
**kwargs
)
fig, axes = save_and_show(
fig, axes, save, show, close, filename, file_format, dpi, axis_off, extent
)
return fig, axes
def _setup_subplots(
subplots,
nseries,
sharex=False,
sharey=False,
figsize=None,
ax=None,
layout=None,
layout_type="vertical",
):
"""prepares the subplots"""
from pandas.plotting._tools import _subplots, _flatten
if subplots:
fig, axes = _subplots(
naxes=nseries,
sharex=sharex,
sharey=sharey,
figsize=figsize,
ax=ax,
layout=layout,
layout_type=layout_type,
)
else:
if ax is None:
fig = plt.figure(figsize=figsize)
axes = fig.add_subplot(111)
else:
fig = ax.get_figure()
if figsize is not None:
fig.set_size_inches(figsize)
axes = ax
axes = _flatten(axes)
return fig, axes