mirror of
https://github.com/louisleroy5/trnslator.git
synced 2025-01-10 17:05:53 -05:00
1380 lines
49 KiB
Python
1380 lines
49 KiB
Python
################################################################################
|
|
# Module: schedule.py
|
|
# Description: Functions for handling conversion of EnergyPlus schedule objects
|
|
# License: MIT, see full license in LICENSE.txt
|
|
# Web: https://github.com/louisleroy5/translater
|
|
################################################################################
|
|
|
|
import functools
|
|
import logging as lg
|
|
import tempfile
|
|
from datetime import datetime, timedelta
|
|
from itertools import groupby
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from eppy.bunch_subclass import EpBunch
|
|
from path import Path
|
|
|
|
import translater
|
|
from translater import log, settings
|
|
|
|
|
|
class Schedule(object):
|
|
"""An object designed to handle any EnergyPlus schedule object"""
|
|
|
|
def __init__(
|
|
self,
|
|
Name=None,
|
|
idf=None,
|
|
start_day_of_the_week=0,
|
|
strict=False,
|
|
base_year=2018,
|
|
schType=None,
|
|
schTypeLimitsName=None,
|
|
values=None,
|
|
**kwargs
|
|
):
|
|
"""
|
|
Args:
|
|
Name (str): The schedule name in the idf file
|
|
idf (IDF): IDF object
|
|
start_day_of_the_week (int): 0-based day of week (Monday=0)
|
|
strict (bool): if True, schedules that have the Field-Sets such as
|
|
Holidays and CustomDay will raise an error if they are absent
|
|
from the IDF file. If False, any missing qualifiers will be
|
|
ignored.
|
|
base_year (int): The base year of the schedule. Defaults to 2018
|
|
since the first day of that year is a Monday.
|
|
schType (str): The EnergyPlus schedule type. eg.: "Schedule:Year"
|
|
schTypeLimitsName:
|
|
values:
|
|
**kwargs:
|
|
"""
|
|
try:
|
|
kwargs["idf"] = idf
|
|
Name = kwargs.get("Name", Name)
|
|
super(Schedule, self).__init__(**kwargs)
|
|
except:
|
|
pass
|
|
self.strict = strict
|
|
self.idf = idf
|
|
self.Name = Name
|
|
self.startDayOfTheWeek = self.get_sdow(start_day_of_the_week)
|
|
self.year = base_year
|
|
self.startDate = self.start_date()
|
|
|
|
self.count = 0
|
|
self.startHOY = 1
|
|
self.endHOY = 24
|
|
self.unit = "unknown"
|
|
self.index_ = None
|
|
self.values = values
|
|
self.schType = schType
|
|
self.schTypeLimitsName = schTypeLimitsName
|
|
if self.schTypeLimitsName is None:
|
|
self.schTypeLimitsName = self.get_schedule_type_limits_name(
|
|
sch_type=self.schType
|
|
)
|
|
|
|
@classmethod
|
|
def from_values(cls, Name, values, **kwargs):
|
|
"""
|
|
Args:
|
|
Name:
|
|
values:
|
|
**kwargs:
|
|
"""
|
|
return cls(Name=Name, values=values, **kwargs)
|
|
|
|
@classmethod
|
|
def constant_schedule(cls, hourly_value=1, Name="AlwaysOn", idf=None, **kwargs):
|
|
"""Create a schedule with a constant value for the whole yetr. Defaults
|
|
to a schedule with a value of 1, named 'AlwaysOn'.
|
|
|
|
Args:
|
|
hourly_value (float, optional): The value for the constant schedule.
|
|
Defaults to 1.
|
|
Name (str, optional): The name of the schedule. Defaults to Always
|
|
On.
|
|
idf:
|
|
**kwargs:
|
|
"""
|
|
if idf:
|
|
# Add the schedule to the existing idf
|
|
idf.add_object(
|
|
ep_object="Schedule:Constant".upper(),
|
|
**dict(
|
|
Name=Name, Schedule_Type_Limits_Name="", Hourly_Value=hourly_value
|
|
),
|
|
save=False
|
|
)
|
|
return cls(Name=Name, idf=idf, **kwargs)
|
|
else:
|
|
# Create a new idf object and add the schedule to it.
|
|
idftxt = "VERSION, {};".format(
|
|
settings.ep_version.replace("-", ".")[0:3]
|
|
) # Not an empty string. has just the
|
|
# version number
|
|
# we can make a file handle of a string
|
|
if not Path(settings.cache_folder).exists():
|
|
Path(settings.cache_folder).mkdir_p()
|
|
with tempfile.NamedTemporaryFile(
|
|
mode="w",
|
|
suffix="_schedule.idf",
|
|
prefix="temp_",
|
|
dir=settings.cache_folder,
|
|
delete=False,
|
|
) as file:
|
|
file.write(idftxt)
|
|
# initialize the IDF object with the file handle
|
|
from eppy.easyopen import easyopen
|
|
|
|
idf_scratch = easyopen(file.name)
|
|
idf_scratch.__class__ = translater.IDF
|
|
|
|
idf_scratch.add_object(
|
|
ep_object="Schedule:Constant".upper(),
|
|
**dict(
|
|
Name=Name, Schedule_Type_Limits_Name="", Hourly_Value=hourly_value
|
|
),
|
|
save=False
|
|
)
|
|
|
|
sched = cls(Name=Name, idf=idf_scratch, **kwargs)
|
|
return sched
|
|
|
|
@property
|
|
def all_values(self):
|
|
"""returns the values array"""
|
|
if self.values is None:
|
|
epbunch = self.idf.get_schedule_epbunch(self.Name)
|
|
self.values = self.get_schedule_values(epbunch)
|
|
return self.values
|
|
|
|
@property
|
|
def max(self):
|
|
return max(self.all_values)
|
|
|
|
@property
|
|
def min(self):
|
|
return min(self.all_values)
|
|
|
|
@property
|
|
def mean(self):
|
|
return np.mean(self.all_values)
|
|
|
|
@property
|
|
def series(self):
|
|
"""Returns the schedule values as a pd.Series object with a
|
|
DateTimeIndex
|
|
"""
|
|
index = pd.date_range(
|
|
start=self.startDate, periods=len(self.all_values), freq="1H"
|
|
)
|
|
return pd.Series(self.all_values, index=index)
|
|
|
|
def get_schedule_type_limits_name(self, sch_type=None):
|
|
"""Return the Schedule Type Limits name associated to this schedule
|
|
|
|
Args:
|
|
sch_type:
|
|
"""
|
|
schedule_values = self.idf.get_schedule_epbunch(self.Name, sch_type=sch_type)
|
|
try:
|
|
schedule_limit_name = schedule_values.Schedule_Type_Limits_Name
|
|
except:
|
|
return "unknown"
|
|
else:
|
|
return schedule_limit_name
|
|
|
|
def get_schedule_type_limits_data(self, name=None):
|
|
"""Returns Schedule Type Limits data from schedule name
|
|
|
|
Args:
|
|
name:
|
|
"""
|
|
|
|
if name is None:
|
|
name = self.Name
|
|
|
|
schedule_values = self.idf.get_schedule_epbunch(name)
|
|
try:
|
|
schedule_limit_name = schedule_values.Schedule_Type_Limits_Name
|
|
except:
|
|
# this schedule is probably a 'Schedule:Week:Daily' which does
|
|
# not have a Schedule_Type_Limits_Name field
|
|
return "", "", "", ""
|
|
else:
|
|
lower_limit, upper_limit, numeric_type, unit_type = self.idf.get_schedule_type_limits_data_by_name(
|
|
schedule_limit_name
|
|
)
|
|
|
|
self.unit = unit_type
|
|
if self.unit == "unknown":
|
|
self.unit = numeric_type
|
|
|
|
return lower_limit, upper_limit, numeric_type, unit_type
|
|
|
|
def get_schedule_type(self, name=None):
|
|
"""Return the schedule type, eg.: "Schedule:Year"
|
|
|
|
Args:
|
|
name:
|
|
"""
|
|
if name is None:
|
|
name = self.Name
|
|
|
|
schedule_values = self.idf.get_schedule_epbunch(name)
|
|
sch_type = schedule_values.key
|
|
|
|
return sch_type
|
|
|
|
def start_date(self):
|
|
"""The start date of the schedule. Satisfies `startDayOfTheWeek`"""
|
|
import calendar
|
|
|
|
c = calendar.Calendar(firstweekday=self.startDayOfTheWeek)
|
|
start_date = c.monthdatescalendar(self.year, 1)[0][0]
|
|
return datetime(start_date.year, start_date.month, start_date.day)
|
|
|
|
def plot(self, slice=None, **kwargs):
|
|
"""Plot the schedule. Implements the .loc accessor on the series object.
|
|
|
|
Examples:
|
|
>>> s = Schedule(
|
|
>>> Name="NECB-A-Thermostat Setpoint-Heating",
|
|
>>> idf=idf_object)
|
|
>>> )
|
|
>>> s.plot(slice=("2018/01/02", "2018/01/03"), drawstyle="steps-post")
|
|
>>> plt.show()
|
|
|
|
Args:
|
|
slice (tuple): define a 2-tuple object the will be passed to
|
|
:class:`pandas.IndexSlice` as a range.
|
|
**kwargs (dict): keyword arguments passed to
|
|
:meth:`pandas.Series.plot`.
|
|
"""
|
|
hourlyvalues = self.all_values
|
|
index = pd.date_range(self.startDate, periods=len(hourlyvalues), freq="1H")
|
|
series = pd.Series(hourlyvalues, index=index, dtype=float)
|
|
if slice is None:
|
|
slice = pd.IndexSlice[:]
|
|
elif len(slice) > 1:
|
|
slice = pd.IndexSlice[slice[0] : slice[1]]
|
|
label = kwargs.pop("label", self.Name)
|
|
ax = series.loc[slice].plot(**kwargs, label=label)
|
|
return ax
|
|
|
|
def get_interval_day_ep_schedule_values(self, epbunch):
|
|
"""Schedule:Day:Interval
|
|
|
|
Args:
|
|
epbunch (EpBunch): The schedule EpBunch object.
|
|
"""
|
|
|
|
lower_limit, upper_limit, numeric_type, unit_type = self.get_schedule_type_limits_data(
|
|
epbunch.Name
|
|
)
|
|
|
|
number_of_day_sch = int((len(epbunch.fieldvalues) - 3) / 2)
|
|
|
|
hourly_values = np.arange(24, dtype=float)
|
|
start_hour = 0
|
|
for i in range(number_of_day_sch):
|
|
value = float(epbunch["Value_Until_Time_{}".format(i + 1)])
|
|
until_time = [
|
|
int(s.strip())
|
|
for s in epbunch["Time_{}".format(i + 1)].split(":")
|
|
if s.strip().isdigit()
|
|
]
|
|
end_hour = int(until_time[0] + until_time[1] / 60)
|
|
for hour in range(start_hour, end_hour):
|
|
hourly_values[hour] = value
|
|
|
|
start_hour = end_hour
|
|
|
|
if numeric_type.strip().lower() == "discrete":
|
|
hourly_values = hourly_values.astype(int)
|
|
|
|
return hourly_values
|
|
|
|
def get_hourly_day_ep_schedule_values(self, epbunch):
|
|
"""Schedule:Day:Hourly
|
|
|
|
Args:
|
|
epbunch (EpBunch): The schedule EpBunch object.
|
|
"""
|
|
|
|
fieldvalues_ = np.array(epbunch.fieldvalues[3:])
|
|
|
|
return fieldvalues_
|
|
|
|
def get_compact_weekly_ep_schedule_values(
|
|
self, epbunch, start_date=None, index=None
|
|
):
|
|
"""schedule:week:compact
|
|
|
|
Args:
|
|
epbunch (EpBunch): the name of the schedule
|
|
start_date:
|
|
index:
|
|
"""
|
|
if start_date is None:
|
|
start_date = self.startDate
|
|
if index is None:
|
|
idx = pd.date_range(start=start_date, periods=168, freq="1H")
|
|
slicer_ = pd.Series([False] * (len(idx)), index=idx)
|
|
else:
|
|
slicer_ = pd.Series([False] * (len(index)), index=index)
|
|
|
|
weekly_schedules = pd.Series([0] * len(slicer_), index=slicer_.index)
|
|
# update last day of schedule
|
|
|
|
if self.count == 0:
|
|
self.schType = epbunch.key
|
|
self.endHOY = 168
|
|
|
|
num_of_daily_schedules = int(len(epbunch.fieldvalues[2:]) / 2)
|
|
|
|
for i in range(num_of_daily_schedules):
|
|
day_type = epbunch["DayType_List_{}".format(i + 1)].lower()
|
|
how = self.field_set(day_type, slicer_)
|
|
if not weekly_schedules.loc[how].empty:
|
|
# Loop through days and replace with day:schedule values
|
|
days = []
|
|
for name, day in weekly_schedules.loc[how].groupby(
|
|
pd.Grouper(freq="D")
|
|
):
|
|
if not day.empty:
|
|
ref = epbunch.get_referenced_object(
|
|
"ScheduleDay_Name_{}".format(i + 1)
|
|
)
|
|
day.loc[:] = self.get_schedule_values(sched_epbunch=ref)
|
|
days.append(day)
|
|
new = pd.concat(days)
|
|
slicer_.update(pd.Series([True] * len(new.index), index=new.index))
|
|
slicer_ = slicer_.apply(lambda x: x == True)
|
|
weekly_schedules.update(new)
|
|
else:
|
|
return weekly_schedules.values
|
|
|
|
return weekly_schedules.values
|
|
|
|
def get_daily_weekly_ep_schedule_values(self, epbunch):
|
|
"""schedule:week:daily
|
|
|
|
Args:
|
|
epbunch (EpBunch): The schedule EpBunch object.
|
|
"""
|
|
# 7 list for 7 days of the week
|
|
hourly_values = []
|
|
for day in [
|
|
"Monday",
|
|
"Tuesday",
|
|
"Wednesday",
|
|
"Thursday",
|
|
"Friday",
|
|
"Saturday",
|
|
"Sunday",
|
|
]:
|
|
ref = epbunch.get_referenced_object("{}_ScheduleDay_Name".format(day))
|
|
h = self.get_schedule_values(sched_epbunch=ref)
|
|
hourly_values.append(h)
|
|
hourly_values = np.array(hourly_values)
|
|
# shift days earlier by self.startDayOfTheWeek
|
|
hourly_values = np.roll(hourly_values, -self.startDayOfTheWeek, axis=0)
|
|
|
|
return hourly_values.ravel()
|
|
|
|
def get_list_day_ep_schedule_values(self, epbunch):
|
|
"""schedule:day:list
|
|
|
|
Args:
|
|
epbunch (EpBunch): The schedule epbunch object.
|
|
"""
|
|
import pandas as pd
|
|
|
|
freq = int(epbunch["Minutes_per_Item"]) # Frequency of the values
|
|
num_values = epbunch.fieldvalues[5:] # List of values
|
|
method = epbunch["Interpolate_to_Timestep"] # How to resample
|
|
|
|
# fill a list of available values and pad with zeros (this is safer
|
|
# but should not occur)
|
|
all_values = np.arange(int(24 * 60 / freq))
|
|
for i in all_values:
|
|
try:
|
|
all_values[i] = num_values[i]
|
|
except:
|
|
all_values[i] = 0
|
|
# create a fake index to help us with the resampling
|
|
index = pd.date_range(
|
|
start=self.startDate, periods=(24 * 60) / freq, freq="{}T".format(freq)
|
|
)
|
|
series = pd.Series(all_values, index=index)
|
|
|
|
# resample series to hourly values and apply resampler function
|
|
series = series.resample("1H").apply(_how(method))
|
|
|
|
return series.values
|
|
|
|
def get_constant_ep_schedule_values(self, epbunch):
|
|
"""schedule:constant
|
|
|
|
Args:
|
|
epbunch (EpBunch): The schedule epbunch object.
|
|
"""
|
|
lower_limit, upper_limit, numeric_type, unit_type = self.get_schedule_type_limits_data(
|
|
epbunch.Name
|
|
)
|
|
|
|
hourly_values = np.arange(8760)
|
|
value = float(epbunch["Hourly_Value"])
|
|
for hour in hourly_values:
|
|
hourly_values[hour] = value
|
|
|
|
if numeric_type.strip().lower() == "discrete":
|
|
hourly_values = hourly_values.astype(int)
|
|
|
|
return hourly_values
|
|
|
|
def get_file_ep_schedule_values(self, epbunch):
|
|
"""schedule:file
|
|
|
|
Args:
|
|
epbunch (EpBunch): The schedule epbunch object.
|
|
"""
|
|
filename = epbunch["File_Name"]
|
|
column = epbunch["Column_Number"]
|
|
rows = epbunch["Rows_to_Skip_at_Top"]
|
|
hours = epbunch["Number_of_Hours_of_Data"]
|
|
sep = epbunch["Column_Separator"]
|
|
interp = epbunch["Interpolate_to_Timestep"]
|
|
|
|
import pandas as pd
|
|
import os
|
|
|
|
idfdir = os.path.dirname(self.idf.idfname)
|
|
file = os.path.join(idfdir, filename)
|
|
delimeter = _separator(sep)
|
|
skip_rows = int(rows) - 1 # We want to keep the column
|
|
col = [int(column) - 1] # zero-based
|
|
epbunch = pd.read_csv(
|
|
file, delimiter=delimeter, skiprows=skip_rows, usecols=col
|
|
)
|
|
|
|
return epbunch.iloc[:, 0].values
|
|
|
|
def get_compact_ep_schedule_values(self, epbunch):
|
|
"""schedule:compact
|
|
|
|
Args:
|
|
epbunch (EpBunch): The schedule epbunch object.
|
|
"""
|
|
field_sets = ["through", "for", "interpolate", "until", "value"]
|
|
fields = epbunch.fieldvalues[3:]
|
|
|
|
index = pd.date_range(start=self.startDate, periods=8760, freq="H")
|
|
zeros = np.zeros(len(index))
|
|
|
|
slicer_ = pd.Series([False] * len(index), index=index)
|
|
series = pd.Series(zeros, index=index)
|
|
|
|
from_day = self.startDate
|
|
ep_from_day = datetime(self.year, 1, 1)
|
|
from_time = "00:00"
|
|
how_interpolate = None
|
|
for field in fields:
|
|
if any([spe in field.lower() for spe in field_sets]):
|
|
f_set, hour, minute, value = self._field_interpreter(field)
|
|
|
|
if f_set.lower() == "through":
|
|
# main condition. All sub-conditions must obey a
|
|
# `Through` condition
|
|
|
|
# First, initialize the slice (all False for now)
|
|
through_conditions = self.invalidate_condition(series)
|
|
|
|
# reset from_time
|
|
from_time = "00:00"
|
|
|
|
# Prepare ep_to_day variable
|
|
ep_to_day = self._date_field_interpretation(value) + timedelta(
|
|
days=1
|
|
)
|
|
|
|
# Calculate Timedelta in days
|
|
days = (ep_to_day - ep_from_day).days
|
|
# Add timedelta to start_date
|
|
to_day = from_day + timedelta(days=days) + timedelta(hours=-1)
|
|
|
|
# slice the conditions with the range and apply True
|
|
through_conditions.loc[from_day:to_day] = True
|
|
|
|
from_day = to_day + timedelta(hours=1)
|
|
ep_from_day = ep_to_day
|
|
elif f_set.lower() == "for":
|
|
# slice specific days
|
|
# reset from_time
|
|
from_time = "00:00"
|
|
|
|
for_condition = self.invalidate_condition(series)
|
|
fors = value.split()
|
|
if len(fors) > 1:
|
|
# if multiple `For`. eg.: For: Weekends Holidays,
|
|
# Combine both conditions
|
|
for value in fors:
|
|
if value.lower() == "allotherdays":
|
|
# Apply condition to slice
|
|
how = self.field_set(value, slicer_)
|
|
# Reset through condition
|
|
through_conditions = how
|
|
for_condition = how
|
|
else:
|
|
how = self.field_set(value, slicer_)
|
|
if how is not None:
|
|
for_condition.loc[how] = True
|
|
elif value.lower() == "allotherdays":
|
|
# Apply condition to slice
|
|
how = self.field_set(value, slicer_)
|
|
# Reset through condition
|
|
through_conditions = how
|
|
for_condition = how
|
|
else:
|
|
# Apply condition to slice
|
|
how = self.field_set(value, slicer_)
|
|
for_condition.loc[how] = True
|
|
|
|
# Combine the for_condition with all_conditions
|
|
all_conditions = through_conditions & for_condition
|
|
|
|
# update in memory slice
|
|
# self.sliced_day_.loc[all_conditions] = True
|
|
elif "interpolate" in f_set.lower():
|
|
# we need to upsample to series to 8760 * 60 values
|
|
new_idx = pd.date_range(
|
|
start=self.startDate, periods=525600, closed="left", freq="T"
|
|
)
|
|
series = series.resample("T").pad()
|
|
series = series.reindex(new_idx)
|
|
series.fillna(method="pad", inplace=True)
|
|
through_conditions = through_conditions.resample("T").pad()
|
|
through_conditions = through_conditions.reindex(new_idx)
|
|
through_conditions.fillna(method="pad", inplace=True)
|
|
for_condition = for_condition.resample("T").pad()
|
|
for_condition = for_condition.reindex(new_idx)
|
|
for_condition.fillna(method="pad", inplace=True)
|
|
how_interpolate = value.lower()
|
|
elif f_set.lower() == "until":
|
|
until_condition = self.invalidate_condition(series)
|
|
if series.index.freq.name == "T":
|
|
# until_time = str(int(hour) - 1) + ':' + minute
|
|
until_time = timedelta(
|
|
hours=int(hour), minutes=int(minute)
|
|
) - timedelta(minutes=1)
|
|
|
|
else:
|
|
until_time = str(int(hour) - 1) + ":" + minute
|
|
until_condition.loc[
|
|
until_condition.between_time(from_time, str(until_time)).index
|
|
] = True
|
|
all_conditions = (
|
|
for_condition & through_conditions & until_condition
|
|
)
|
|
|
|
from_time = str(int(hour)) + ":" + minute
|
|
elif f_set.lower() == "value":
|
|
# If the therm `Value: ` field is used, we will catch it
|
|
# here.
|
|
# update in memory slice
|
|
slicer_.loc[all_conditions] = True
|
|
series[all_conditions] = value
|
|
else:
|
|
# Do something here before looping to the next Field
|
|
pass
|
|
else:
|
|
# If the term `Value: ` is not used; the variable is simply
|
|
# passed in the Field
|
|
value = float(field)
|
|
series[all_conditions] = value
|
|
|
|
# update in memory slice
|
|
slicer_.loc[all_conditions] = True
|
|
if how_interpolate:
|
|
return series.resample("H").mean().values
|
|
else:
|
|
return series.values
|
|
|
|
def _field_interpreter(self, field):
|
|
"""dealing with a Field-Set (Through, For, Interpolate, # Until, Value)
|
|
and return the parsed string
|
|
|
|
Args:
|
|
field:
|
|
"""
|
|
|
|
values_sets = [
|
|
"weekdays",
|
|
"weekends",
|
|
"alldays",
|
|
"allotherdays",
|
|
"sunday",
|
|
"monday",
|
|
"tuesday",
|
|
"wednesday",
|
|
"thursday",
|
|
"friday",
|
|
"saturday",
|
|
"summerdesignday",
|
|
"winterdesignday",
|
|
"holiday",
|
|
]
|
|
keywords = None
|
|
|
|
if "through" in field.lower():
|
|
# deal with through
|
|
if ":" in field.lower():
|
|
# parse colon
|
|
f_set, statement = field.split(":")
|
|
hour = None
|
|
minute = None
|
|
value = statement.strip()
|
|
else:
|
|
msg = (
|
|
'The schedule "{sch}" contains a Field '
|
|
'that is not understood: "{field}"'.format(
|
|
sch=self.Name, field=field
|
|
)
|
|
)
|
|
raise NotImplementedError(msg)
|
|
elif "for" in field.lower():
|
|
keywords = [word for word in values_sets if word in field.lower()]
|
|
if ":" in field.lower():
|
|
# parse colon
|
|
f_set, statement = field.split(":")
|
|
value = statement.strip()
|
|
hour = None
|
|
minute = None
|
|
elif keywords:
|
|
# get epBunch of the sizing period
|
|
statement = " ".join(keywords)
|
|
f_set = [s for s in field.split() if "for" in s.lower()][0]
|
|
value = statement.strip()
|
|
hour = None
|
|
minute = None
|
|
else:
|
|
# parse without a colon
|
|
msg = (
|
|
'The schedule "{sch}" contains a Field '
|
|
'that is not understood: "{field}"'.format(
|
|
sch=self.Name, field=field
|
|
)
|
|
)
|
|
raise NotImplementedError(msg)
|
|
elif "interpolate" in field.lower():
|
|
msg = (
|
|
'The schedule "{sch}" contains sub-hourly values ('
|
|
'Field-Set="{field}"). The average over the hour is '
|
|
"taken".format(sch=self.Name, field=field)
|
|
)
|
|
log(msg, lg.WARNING)
|
|
f_set, value = field.split(":")
|
|
hour = None
|
|
minute = None
|
|
elif "until" in field.lower():
|
|
if ":" in field.lower():
|
|
# parse colon
|
|
try:
|
|
f_set, hour, minute = field.split(":")
|
|
hour = hour.strip() # remove trailing spaces
|
|
minute = minute.strip() # remove trailing spaces
|
|
value = None
|
|
except:
|
|
f_set = "until"
|
|
hour, minute = field.split(":")
|
|
hour = hour[-2:].strip()
|
|
minute = minute.strip()
|
|
value = None
|
|
else:
|
|
msg = (
|
|
'The schedule "{sch}" contains a Field '
|
|
'that is not understood: "{field}"'.format(
|
|
sch=self.Name, field=field
|
|
)
|
|
)
|
|
raise NotImplementedError(msg)
|
|
elif "value" in field.lower():
|
|
if ":" in field.lower():
|
|
# parse colon
|
|
f_set, statement = field.split(":")
|
|
value = statement.strip()
|
|
hour = None
|
|
minute = None
|
|
else:
|
|
msg = (
|
|
'The schedule "{sch}" contains a Field '
|
|
'that is not understood: "{field}"'.format(
|
|
sch=self.Name, field=field
|
|
)
|
|
)
|
|
raise NotImplementedError(msg)
|
|
else:
|
|
# deal with the data value
|
|
f_set = field
|
|
hour = None
|
|
minute = None
|
|
value = field[len(field) + 1 :].strip()
|
|
|
|
return f_set, hour, minute, value
|
|
|
|
@staticmethod
|
|
def invalidate_condition(series):
|
|
"""
|
|
Args:
|
|
series:
|
|
"""
|
|
index = series.index
|
|
periods = len(series)
|
|
return pd.Series([False] * periods, index=index)
|
|
|
|
def get_yearly_ep_schedule_values(self, epbunch):
|
|
"""schedule:year
|
|
|
|
Args:
|
|
epbunch (EpBunch): the schedule epbunch.
|
|
"""
|
|
# first week
|
|
|
|
start_date = self.startDate
|
|
idx = pd.date_range(start=start_date, periods=8760, freq="1H")
|
|
hourly_values = pd.Series([0] * 8760, index=idx)
|
|
|
|
# update last day of schedule
|
|
self.endHOY = 8760
|
|
|
|
# generate weekly schedules
|
|
num_of_weekly_schedules = int(len(epbunch.fieldvalues[3:]) / 5)
|
|
|
|
for i in range(num_of_weekly_schedules):
|
|
ref = epbunch.get_referenced_object("ScheduleWeek_Name_{}".format(i + 1))
|
|
|
|
start_month = getattr(epbunch, "Start_Month_{}".format(i + 1))
|
|
end_month = getattr(epbunch, "End_Month_{}".format(i + 1))
|
|
start_day = getattr(epbunch, "Start_Day_{}".format(i + 1))
|
|
end_day = getattr(epbunch, "End_Day_{}".format(i + 1))
|
|
|
|
start = datetime.strptime(
|
|
"{}/{}/{}".format(self.year, start_month, start_day), "%Y/%m/%d"
|
|
)
|
|
end = datetime.strptime(
|
|
"{}/{}/{}".format(self.year, end_month, end_day), "%Y/%m/%d"
|
|
)
|
|
days = (end - start).days + 1
|
|
|
|
end_date = start_date + timedelta(days=days) + timedelta(hours=23)
|
|
how = pd.IndexSlice[start_date:end_date]
|
|
|
|
weeks = []
|
|
for name, week in hourly_values.loc[how].groupby(pd.Grouper(freq="168H")):
|
|
if not week.empty:
|
|
try:
|
|
week.loc[:] = self.get_schedule_values(
|
|
sched_epbunch=ref,
|
|
start_date=week.index[0],
|
|
index=week.index,
|
|
)
|
|
except ValueError:
|
|
week.loc[:] = self.get_schedule_values(
|
|
sched_epbunch=ref, start_date=week.index[0]
|
|
)[0 : len(week)]
|
|
finally:
|
|
weeks.append(week)
|
|
new = pd.concat(weeks)
|
|
hourly_values.update(new)
|
|
start_date += timedelta(days=days)
|
|
|
|
return hourly_values.values
|
|
|
|
def get_schedule_values(self, sched_epbunch, start_date=None, index=None):
|
|
"""Main function that returns the schedule values
|
|
|
|
Args:
|
|
sched_epbunch (EpBunch): the schedule epbunch object
|
|
start_date:
|
|
index:
|
|
"""
|
|
if self.count == 0:
|
|
# This is the first time, get the schedule type and the type limits.
|
|
if self.schTypeLimitsName is None:
|
|
self.schTypeLimitsName = self.get_schedule_type_limits_name()
|
|
self.count += 1
|
|
|
|
sch_type = sched_epbunch.key.upper()
|
|
|
|
if sch_type.upper() == "schedule:year".upper():
|
|
hourly_values = self.get_yearly_ep_schedule_values(sched_epbunch)
|
|
elif sch_type.upper() == "schedule:day:interval".upper():
|
|
hourly_values = self.get_interval_day_ep_schedule_values(sched_epbunch)
|
|
elif sch_type.upper() == "schedule:day:hourly".upper():
|
|
hourly_values = self.get_hourly_day_ep_schedule_values(sched_epbunch)
|
|
elif sch_type.upper() == "schedule:day:list".upper():
|
|
hourly_values = self.get_list_day_ep_schedule_values(sched_epbunch)
|
|
elif sch_type.upper() == "schedule:week:compact".upper():
|
|
hourly_values = self.get_compact_weekly_ep_schedule_values(
|
|
sched_epbunch, start_date, index
|
|
)
|
|
elif sch_type.upper() == "schedule:week:daily".upper():
|
|
hourly_values = self.get_daily_weekly_ep_schedule_values(sched_epbunch)
|
|
elif sch_type.upper() == "schedule:constant".upper():
|
|
hourly_values = self.get_constant_ep_schedule_values(sched_epbunch)
|
|
elif sch_type.upper() == "schedule:compact".upper():
|
|
hourly_values = self.get_compact_ep_schedule_values(sched_epbunch)
|
|
elif sch_type.upper() == "schedule:file".upper():
|
|
hourly_values = self.get_file_ep_schedule_values(sched_epbunch)
|
|
else:
|
|
log(
|
|
"translater does not currently support schedules of type "
|
|
'"{}"'.format(sch_type),
|
|
lg.WARNING,
|
|
)
|
|
hourly_values = []
|
|
|
|
return hourly_values
|
|
|
|
def to_year_week_day(self, values=None, idf=None):
|
|
"""convert a Schedule Class to the 'Schedule:Year',
|
|
'Schedule:Week:Daily' and 'Schedule:Day:Hourly' representation
|
|
|
|
Args:
|
|
values:
|
|
idf:
|
|
|
|
Returns:
|
|
3-element tuple containing
|
|
|
|
- **yearly** (*Schedule*): The yearly schedule object
|
|
- **weekly** (*list of Schedule*): The list of weekly schedule
|
|
objects
|
|
- **daily** (*list of Schedule*):The list of daily schedule objects
|
|
"""
|
|
if values:
|
|
full_year = values
|
|
else:
|
|
full_year = np.array(self.all_values) # array of shape (8760,)
|
|
values = full_year.reshape(-1, 24) # shape (365, 24)
|
|
|
|
# create unique days
|
|
unique_days, nds = np.unique(values, axis=0, return_inverse=True)
|
|
|
|
ep_days = []
|
|
dict_day = {}
|
|
count_day = 0
|
|
for unique_day in unique_days:
|
|
name = "d_" + self.Name + "_" + "%03d" % count_day
|
|
name, count_day = translater.check_unique_name(
|
|
"d", count_day, name, translater.settings.unique_schedules, suffix=True
|
|
)
|
|
dict_day[name] = unique_day
|
|
|
|
translater.settings.unique_schedules.append(name)
|
|
|
|
# Create idf_objects for schedule:day:hourly
|
|
ep_day = self.idf.add_object(
|
|
ep_object="Schedule:Day:Hourly".upper(),
|
|
save=False,
|
|
**dict(
|
|
Name=name,
|
|
Schedule_Type_Limits_Name=self.schTypeLimitsName,
|
|
**{"Hour_{}".format(i + 1): unique_day[i] for i in range(24)}
|
|
)
|
|
)
|
|
ep_days.append(ep_day)
|
|
|
|
# create unique weeks from unique days
|
|
unique_weeks, nwsi, nws, count = np.unique(
|
|
full_year[: 364 * 24, ...].reshape(-1, 168),
|
|
return_index=True,
|
|
axis=0,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
)
|
|
|
|
# Appending unique weeks in dictionary with name and values of weeks as
|
|
# keys
|
|
# {'name_week': {'dayName':[]}}
|
|
dict_week = {}
|
|
count_week = 0
|
|
for unique_week in unique_weeks:
|
|
week_id = "w_" + self.Name + "_" + "%03d" % count_week
|
|
week_id, count_week = translater.check_unique_name(
|
|
"w",
|
|
count_week,
|
|
week_id,
|
|
translater.settings.unique_schedules,
|
|
suffix=True,
|
|
)
|
|
translater.settings.unique_schedules.append(week_id)
|
|
|
|
dict_week[week_id] = {}
|
|
for i in list(range(0, 7)):
|
|
day_of_week = unique_week[..., i * 24 : (i + 1) * 24]
|
|
for key in dict_day:
|
|
if (day_of_week == dict_day[key]).all():
|
|
dict_week[week_id]["day_{}".format(i)] = key
|
|
|
|
# Create idf_objects for schedule:week:daily
|
|
# We use the calendar module to set the week days order
|
|
import calendar
|
|
|
|
# initialize the calendar object
|
|
c = calendar.Calendar(firstweekday=self.startDayOfTheWeek)
|
|
|
|
# Create ep_weeks list and iterate over dict_week
|
|
ep_weeks = []
|
|
for week_id in dict_week:
|
|
ep_week = self.idf.add_object(
|
|
ep_object="Schedule:Week:Daily".upper(),
|
|
save=False,
|
|
**dict(
|
|
Name=week_id,
|
|
**{
|
|
"{}_ScheduleDay_Name".format(
|
|
calendar.day_name[day_num]
|
|
): dict_week[week_id]["day_{}".format(day_num)]
|
|
for day_num in c.iterweekdays()
|
|
},
|
|
Holiday_ScheduleDay_Name=dict_week[week_id]["day_6"],
|
|
SummerDesignDay_ScheduleDay_Name=dict_week[week_id]["day_1"],
|
|
WinterDesignDay_ScheduleDay_Name=dict_week[week_id]["day_1"],
|
|
CustomDay1_ScheduleDay_Name=dict_week[week_id]["day_2"],
|
|
CustomDay2_ScheduleDay_Name=dict_week[week_id]["day_5"]
|
|
)
|
|
)
|
|
ep_weeks.append(ep_week)
|
|
|
|
blocks = {}
|
|
from_date = datetime(self.year, 1, 1)
|
|
bincount = [sum(1 for _ in group) for key, group in groupby(nws + 1) if key]
|
|
week_order = {
|
|
i: v
|
|
for i, v in enumerate(
|
|
np.array([key for key, group in groupby(nws + 1) if key]) - 1
|
|
)
|
|
}
|
|
for i, (week_n, count) in enumerate(zip(week_order, bincount)):
|
|
week_id = list(dict_week)[week_order[i]]
|
|
to_date = from_date + timedelta(days=int(count * 7), hours=-1)
|
|
blocks[i] = {}
|
|
blocks[i]["week_id"] = week_id
|
|
blocks[i]["from_day"] = from_date.day
|
|
blocks[i]["end_day"] = to_date.day
|
|
blocks[i]["from_month"] = from_date.month
|
|
blocks[i]["end_month"] = to_date.month
|
|
from_date = to_date + timedelta(hours=1)
|
|
|
|
# If this is the last block, force end of year
|
|
if i == len(bincount) - 1:
|
|
blocks[i]["end_day"] = 31
|
|
blocks[i]["end_month"] = 12
|
|
|
|
new_dict = dict(
|
|
Name=self.Name + "_", Schedule_Type_Limits_Name=self.schTypeLimitsName
|
|
)
|
|
for i in blocks:
|
|
new_dict.update(
|
|
{
|
|
"ScheduleWeek_Name_{}".format(i + 1): blocks[i]["week_id"],
|
|
"Start_Month_{}".format(i + 1): blocks[i]["from_month"],
|
|
"Start_Day_{}".format(i + 1): blocks[i]["from_day"],
|
|
"End_Month_{}".format(i + 1): blocks[i]["end_month"],
|
|
"End_Day_{}".format(i + 1): blocks[i]["end_day"],
|
|
}
|
|
)
|
|
|
|
ep_year = self.idf.add_object(
|
|
ep_object="Schedule:Year".upper(), save=False, **new_dict
|
|
)
|
|
return ep_year, ep_weeks, ep_days
|
|
|
|
def _date_field_interpretation(self, field):
|
|
"""Date Field Interpretation
|
|
|
|
Info:
|
|
See EnergyPlus documentation for more details: 1.6.8.1.2 Field:
|
|
Start Date (Table 1.4: Date Field Interpretation)
|
|
|
|
Args:
|
|
field (str): The EnergyPlus Field Contents
|
|
|
|
Returns:
|
|
(datetime): The datetime object
|
|
"""
|
|
# < number > Weekday in Month
|
|
formats = ["%m/%d", "%d %B", "%B %d", "%d %b", "%b %d"]
|
|
date = None
|
|
for format_str in formats:
|
|
# Tru to parse using each defined formats
|
|
try:
|
|
date = datetime.strptime(field, format_str)
|
|
except:
|
|
pass
|
|
else:
|
|
date = datetime(self.year, date.month, date.day)
|
|
if date is None:
|
|
# if the defined formats did not work, try the fancy parse
|
|
try:
|
|
date = self._parse_fancy_string(field)
|
|
except:
|
|
msg = (
|
|
"the schedule '{sch}' contains a "
|
|
"Field that is not understood: '{field}'".format(
|
|
sch=self.Name, field=field
|
|
)
|
|
)
|
|
raise ValueError(msg)
|
|
else:
|
|
return date
|
|
else:
|
|
return date
|
|
|
|
def _parse_fancy_string(self, field):
|
|
"""Will try to parse cases such as `3rd Monday in February` or `Last
|
|
Weekday In Month`
|
|
|
|
Args:
|
|
field (str): The EnergyPlus Field Contents
|
|
|
|
Returns:
|
|
(datetime): The datetime object
|
|
"""
|
|
import re
|
|
|
|
# split the string at the term ' in '
|
|
time, month = field.lower().split(" in ")
|
|
month = datetime.strptime(month, "%B").month
|
|
|
|
# split the first part into nth and dayofweek
|
|
nth, dayofweek = time.split(" ")
|
|
if "last" in nth:
|
|
nth = -1 # Use the last one
|
|
else:
|
|
nth = re.findall(r"\d+", nth) # use the nth one
|
|
nth = int(nth[0]) - 1 # python is zero-based
|
|
|
|
weekday = {
|
|
"monday": 0,
|
|
"tuesday": 1,
|
|
"wednesday": 2,
|
|
"thursday": 3,
|
|
"friday": 4,
|
|
"saturday": 5,
|
|
"sunday": 6,
|
|
}
|
|
|
|
# parse the dayofweek eg. monday
|
|
dayofweek = weekday.get(dayofweek, 6)
|
|
|
|
# create list of possible days using Calendar
|
|
import calendar
|
|
|
|
c = calendar.Calendar(firstweekday=self.startDayOfTheWeek)
|
|
monthcal = c.monthdatescalendar(self.year, month)
|
|
|
|
# iterate though the month and get the nth weekday
|
|
date = [
|
|
day
|
|
for week in monthcal
|
|
for day in week
|
|
if day.weekday() == dayofweek and day.month == month
|
|
][nth]
|
|
return datetime(date.year, date.month, date.day)
|
|
|
|
def field_set(self, field, slicer_=None):
|
|
"""helper function to return the proper slicer depending on the
|
|
field_set value.
|
|
|
|
Available values are: Weekdays, Weekends, Holidays, Alldays,
|
|
SummerDesignDay, WinterDesignDay, Sunday, Monday, Tuesday, Wednesday,
|
|
Thursday, Friday, Saturday, CustomDay1, CustomDay2, AllOtherDays
|
|
|
|
Args:
|
|
field (str): The EnergyPlus field set value.
|
|
slicer_:
|
|
|
|
Returns:
|
|
(indexer-like): Returns the appropriate indexer for the series.
|
|
"""
|
|
|
|
if field.lower() == "weekdays":
|
|
# return only days of weeks
|
|
return lambda x: x.index.dayofweek < 5
|
|
elif field.lower() == "weekends":
|
|
# return only weekends
|
|
return lambda x: x.index.dayofweek >= 5
|
|
elif field.lower() == "alldays":
|
|
log(
|
|
'For schedule "{}", the field-set "AllDays" may be overridden '
|
|
'by the "AllOtherDays" field-set'.format(self.Name),
|
|
lg.WARNING,
|
|
)
|
|
# return all days := equivalenet to .loc[:]
|
|
return pd.IndexSlice[:]
|
|
elif field.lower() == "allotherdays":
|
|
# return unused days (including special days). Uses the global
|
|
# variable `slicer_`
|
|
import operator
|
|
|
|
if slicer_ is not None:
|
|
return _conjunction(
|
|
*[self.special_day(field, slicer_), ~slicer_], logical=operator.or_
|
|
)
|
|
else:
|
|
raise NotImplementedError
|
|
elif field.lower() == "sunday":
|
|
# return only sundays
|
|
return lambda x: x.index.dayofweek == 6
|
|
elif field.lower() == "monday":
|
|
# return only mondays
|
|
return lambda x: x.index.dayofweek == 0
|
|
elif field.lower() == "tuesday":
|
|
# return only Tuesdays
|
|
return lambda x: x.index.dayofweek == 1
|
|
elif field.lower() == "wednesday":
|
|
# return only Wednesdays
|
|
return lambda x: x.index.dayofweek == 2
|
|
elif field.lower() == "thursday":
|
|
# return only Thursdays
|
|
return lambda x: x.index.dayofweek == 3
|
|
elif field.lower() == "friday":
|
|
# return only Fridays
|
|
return lambda x: x.index.dayofweek == 4
|
|
elif field.lower() == "saturday":
|
|
# return only Saturdays
|
|
return lambda x: x.index.dayofweek == 5
|
|
elif field.lower() == "summerdesignday":
|
|
# return design_day(self, field)
|
|
return None
|
|
elif field.lower() == "winterdesignday":
|
|
# return design_day(self, field)
|
|
return None
|
|
elif field.lower() == "holiday" or field.lower() == "holidays":
|
|
field = "holiday"
|
|
return self.special_day(field, slicer_)
|
|
elif not self.strict:
|
|
# If not strict, ignore missing field-sets such as CustomDay1
|
|
return None
|
|
else:
|
|
raise NotImplementedError(
|
|
"translater does not yet support The " 'Field_set "{}"'.format(field)
|
|
)
|
|
|
|
def __len__(self):
|
|
"""returns the length of all values of the schedule"""
|
|
return len(self.all_values)
|
|
|
|
def __add__(self, other):
|
|
if isinstance(other, Schedule):
|
|
return self.all_values + other.all_values
|
|
elif isinstance(other, list):
|
|
return self.all_values + other
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def __sub__(self, other):
|
|
if isinstance(other, Schedule):
|
|
return self.all_values - other.all_values
|
|
elif isinstance(other, list):
|
|
return self.all_values - other
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def __mul__(self, other):
|
|
if isinstance(other, Schedule):
|
|
return self.all_values * other.all_values
|
|
elif isinstance(other, list):
|
|
return self.all_values * other
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def get_sdow(self, start_day_of_week):
|
|
"""Returns the start day of the week
|
|
|
|
Args:
|
|
start_day_of_week:
|
|
"""
|
|
if start_day_of_week is None:
|
|
return self.idf.day_of_week_for_start_day
|
|
else:
|
|
return start_day_of_week
|
|
|
|
def special_day(self, field, slicer_):
|
|
"""try to get the RunPeriodControl:SpecialDays for the corresponding Day
|
|
Type
|
|
|
|
Args:
|
|
field:
|
|
slicer_:
|
|
"""
|
|
sp_slicer_ = slicer_.copy()
|
|
sp_slicer_.loc[:] = False
|
|
special_day_types = ["holiday", "customday1", "customday2"]
|
|
|
|
dds = self.idf.idfobjects["RunPeriodControl:SpecialDays".upper()]
|
|
dd = [
|
|
dd
|
|
for dd in dds
|
|
if dd.Special_Day_Type.lower() == field
|
|
or dd.Special_Day_Type.lower() in special_day_types
|
|
]
|
|
if len(dd) > 0:
|
|
slice = []
|
|
for dd in dd:
|
|
# can have more than one special day types
|
|
data = dd.Start_Date
|
|
ep_start_date = self._date_field_interpretation(data)
|
|
ep_orig = datetime(self.year, 1, 1)
|
|
days_to_speciald = (ep_start_date - ep_orig).days
|
|
duration = int(dd.Duration)
|
|
from_date = self.startDate + timedelta(days=days_to_speciald)
|
|
to_date = from_date + timedelta(days=duration) + timedelta(hours=-1)
|
|
|
|
sp_slicer_.loc[from_date:to_date] = True
|
|
return sp_slicer_
|
|
elif not self.strict:
|
|
return sp_slicer_
|
|
else:
|
|
msg = (
|
|
'Could not find a "SizingPeriod:DesignDay" object '
|
|
'needed for schedule "{}" with Day Type "{}"'.format(
|
|
self.Name, field.capitalize()
|
|
)
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
def design_day(self, field, slicer_):
|
|
# try to get the SizingPeriod:DesignDay for the corresponding Day Type
|
|
"""
|
|
Args:
|
|
field:
|
|
slicer_:
|
|
"""
|
|
sp_slicer_ = slicer_.copy()
|
|
sp_slicer_.loc[:] = False
|
|
dds = self.idf.idfobjects["SizingPeriod:DesignDay".upper()]
|
|
dd = [dd for dd in dds if dd.Day_Type.lower() == field]
|
|
if len(dd) > 0:
|
|
for dd in dd:
|
|
# should have found only one design day matching the Day Type
|
|
month = dd.Month
|
|
day = dd.Day_of_Month
|
|
data = str(month) + "/" + str(day)
|
|
ep_start_date = self._date_field_interpretation(data)
|
|
ep_orig = datetime(self.year, 1, 1)
|
|
days_to_speciald = (ep_start_date - ep_orig).days
|
|
duration = 1 # Duration of 1 day
|
|
from_date = self.startDate + timedelta(days=days_to_speciald)
|
|
to_date = from_date + timedelta(days=duration) + timedelta(hours=-1)
|
|
|
|
sp_slicer_.loc[from_date:to_date] = True
|
|
return sp_slicer_
|
|
elif not self.strict:
|
|
return sp_slicer_
|
|
else:
|
|
msg = (
|
|
'Could not find a "SizingPeriod:DesignDay" object '
|
|
'needed for schedule "{}" with Day Type "{}"'.format(
|
|
self.Name, field.capitalize()
|
|
)
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
data = [dd[0].Month, dd[0].Day_of_Month]
|
|
date = "/".join([str(item).zfill(2) for item in data])
|
|
date = self._date_field_interpretation(date)
|
|
return lambda x: x.index == date
|
|
|
|
def combine(self, other, weights=None, quantity=None):
|
|
"""Combine two schedule objects together.
|
|
|
|
Args:
|
|
other (Schedule): the other Schedule object to combine with.
|
|
weights (list-like, optional): A list-like object of len 2. If None,
|
|
equal weights are used.
|
|
quantity: scalar value that will be multiplied by self before the
|
|
averaging occurs. This ensures that the resulting schedule
|
|
returns the correct integrated value.
|
|
|
|
Returns:
|
|
(Schedule): the combined Schedule object.
|
|
"""
|
|
# Check if other is the same type as self
|
|
if not isinstance(other, self.__class__):
|
|
msg = "Cannot combine %s with %s" % (
|
|
self.__class__.__name__,
|
|
other.__class__.__name__,
|
|
)
|
|
raise NotImplementedError(msg)
|
|
|
|
# check if the schedule is the same
|
|
|
|
if all(self.all_values == other.all_values):
|
|
return self
|
|
if not weights:
|
|
weights = [1, 1]
|
|
new_values = np.average(
|
|
[self.all_values, other.all_values], axis=0, weights=weights
|
|
)
|
|
|
|
# the new object's name
|
|
name = "+".join([self.Name, other.Name])
|
|
|
|
attr = dict(value=new_values)
|
|
idf = attr.pop("idf", None)
|
|
new_obj = self.__class__(name, idf, **attr)
|
|
|
|
return new_obj
|
|
|
|
|
|
def _conjunction(*conditions, logical=np.logical_and):
|
|
"""Applies a logical function on n conditions
|
|
|
|
Args:
|
|
*conditions:
|
|
logical:
|
|
"""
|
|
return functools.reduce(logical, conditions)
|
|
|
|
|
|
def _separator(sep):
|
|
"""helper function to return the correct delimiter
|
|
|
|
Args:
|
|
sep:
|
|
"""
|
|
if sep == "Comma":
|
|
return ","
|
|
elif sep == "Tab":
|
|
return "\t"
|
|
elif sep == "Fixed":
|
|
return None
|
|
elif sep == "Semicolon":
|
|
return ";"
|
|
else:
|
|
return ","
|
|
|
|
|
|
def _how(how):
|
|
"""Helper function to return the correct resampler
|
|
|
|
Args:
|
|
how:
|
|
"""
|
|
if how.lower() == "average":
|
|
return "mean"
|
|
elif how.lower() == "linear":
|
|
return "interpolate"
|
|
elif how.lower() == "no":
|
|
return "max"
|
|
else:
|
|
return "max"
|