colouring-montreal/etl/get_test_polygons.py

71 lines
1.7 KiB
Python

"""Download and load a small open dataset for testing
Run this to create a CSV of buildings geometries.
Then run:
- load_geometries.sh (loading geometries to the database)
- create_buildings.sh (creating empty building records for each geometry)
"""
# -*- coding: utf-8 -*-
import os
import subprocess
import osmnx
# configure logging/caching
osmnx.config(log_console=True, use_cache=True)
# configure the image display
size = 256
# (load buildings from about 1.5km² around UCL)
# Latitude and longitude of the ER building:
point = (45.49622606275548, -73.58014026995295)
dist = 612
tags = {"building": True}
gdf = osmnx.features_from_point(point, tags, dist=dist)
# preview image
gdf_proj = osmnx.projection.project_gdf(gdf, to_crs={"init": "epsg:3857"})
gdf_proj = gdf_proj[gdf_proj.geometry.type == "Polygon"]
fig, ax = osmnx.plot_footprints(
gdf_proj,
bgcolor="#333333",
color="w",
figsize=(4, 4),
save=True,
show=False,
close=True,
filepath="test_buildings_preview.png",
dpi=600,
)
# save
test_dir = os.path.dirname(__file__)
test_data_geojson = str(os.path.join(test_dir, "test_buildings.geojson"))
subprocess.run(["rm", test_data_geojson])
gdf_to_save = gdf_proj.reset_index()[["osmid", "geometry"]]
gdf_to_save.rename(columns={"osmid": "fid"}).to_file(
test_data_geojson, driver="GeoJSON"
)
# convert to CSV
test_data_csv = str(os.path.join(test_dir, "test_buildings.3857.csv"))
subprocess.run(["rm", test_data_csv])
subprocess.run(
[
"ogr2ogr",
"-f",
"CSV",
test_data_csv,
test_data_geojson,
"-lco",
"GEOMETRY=AS_WKT",
]
)
# add SRID for ease of loading to PostgreSQL
subprocess.run(["sed", "-i", 's/^"POLYGON/"SRID=3857;POLYGON/', test_data_csv])