
Urban Simulation Platform Projects

MICROBIAL SYSTEMS

Written by: Alireza Adli

Project Reseacher: Narges Rahimi

Supervisor: Professor Ursula Eicker

Project Integrator: Alireza Adli

Next-Generation Cities Institute (NGCI) September 2022



This project is a part of The NGCI’s Urban Simulation Platform project. The platform

has integrated the application of NGCI’s research projects in Python programming lan-

guage. These projects are developed by graduate students and researchers of the institute

towards urban sustainable development in six main areas: energy systems, building, trans-

portation, vegetation, waste and recycling, liveability.

The integration of a project refers to further development of a research project in Object

Oriented Programming (OOP) paradigm following the coding style of the platform. This

is done in order to employ multiple projects in a single workflow.

For more information about this piece of software and documentation, contact Alireza Adli (alireza.adli@concordia.ca)

For detailed technical information of the project read Narges Rahimi Master’s thesis report on the same

subject (Link).

1

mailto:alireza.adli@concordia.ca


Contents

1 Model Description 3

2 The Project Structure 3

2.1 MicrobialSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 SingleChamberElectrolysisCell . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 DualChamberElectrolysisCell . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 FuelCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 MicrobialSystemWorkflow . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 3rd Party Software 6

4 Input Data 6

5 Constants 7

6 Output Data 10

7 Limitations 11

8 Technical Performance 11

2



1 Model Description

A microbial system for wastewater treatment and energy recovery produces hydrogen

and power from wastewater.

In this project, three microbial systems have been studied and implemented in Python pro-

gramming: Single Chamber Microbial Electrolysis Cell (SCMEC), Dual Chamber Micro-

bial Electrolysis Cell (DCMEC) and Microbial Fuel Cell (MFC). The project considers the

treatment of one litre wastewater. But given the number of inhabitants and water consump-

tion, the system can output results based on the corresponding amount of water.

In the first step, the wastewater should be collected from urban areas such as residential

buildings. Then, collected wastewater will be injected into the bio-electrochemical sys-

tems, including SCMEC, DCMEC, and MFC to treat wastewater and generate hydrogen

and electricity. In the first scenario power output of MFC can be used in two different

applications such as providing energy for electric vehicle charging stations or urban areas

electricity demand. In the second scenario, as the main product of SCMEC and DCMEC,

hydrogen can be considered as a type of energy or to feed MFCs to generate power. It

should be noted that to run the MECs, the applied voltage can be covered by renewable

sources of green electricity such as solar panels and wind turbines.

2 The Project Structure

This project consists of five classes: four classes for modelling different microbial systems

and one work-flow class to carry out different simulations.

2.1 MicrobialSystem

This class has been developed in microbial systems abc.py module. This is an abstract base

class (ABC) which has been defined as a template for developing any microbial system

3



models. ABCs cannot be instantiated but they are being developed as the parent of other

classes. This is being done when modelling different types of the same system. In this way,

the parent class will be used as a template with attributes that are common in different types

and main functionalities. These main functionalities are being defined as abstract methods.

Any other sub system (different types) should define (override) all the abstract methods of

the parent class otherwise, that subclass cannot be instantiated. ABCs raise the control of

the main developer over the project.

For example, in this project all new child classes should include a mass balance(t, val-

ues) method with the mentioned parameters. Otherwise, they cannot be instantiated. This

is the interface (abstract method) of this Abstract Base Class. This rule is not applied to

DualChamberElectrolysisCell class because it inherits from the SingleChamberElectroly-

sisCell class.

2.2 SingleChamberElectrolysisCell

This class has been developed in single chamber electrolysis cell.py module. SingleCham-

berElectrolysisCell simulates the system by inheriting constants and abstract methods (in-

terfaces) of the MicrobialSystem class of microbial system abc module. So the former

should be imported for this module to work. To instantiate this class, it is only needed to

assign the class to a variable. Example: single = SingleChamberElectrolysisCell()

2.3 DualChamberElectrolysisCell

This class has been developed in dual chamber electrolysis cell.py module. A dual

chamber electrolysis cell is very similar to a single chamber one, so in this

project, the DualChamberElectrolysisCell inherits from the SingleChamberElectroly-

sisCell class for constants and some functionalities. So the SingleChamberElec-

trolysisCell class of single chamber electrolysis cell.py module should be imported in

4



dual chamber electrolysis cell.py. To instantiate this class, it is only needed to assign the

class to a variable.

Example: dual = DualChamberElectrolysisCell()

2.4 FuelCell

This class has been developed in microbial fuel cell.py module. FuelCell simulates this

microbial system by inheriting constants and abstract methods (interfaces) of the Micro-

bialSystem class of microbial system abc. So the former should be imported for this mod-

ule to work. To instantiate this class, it is only needed to assign the class to a variable.

Example: microbial fuel cell = FuelCell()

2.5 MicrobialSystemWorkflow

This class has been developed in microbial system workflow.py module. The module is

accessible through below Gitlab link:

https://rs-loy-gitlab.concordia.ca/alireza.adli/microbial-system-workflow

This class simulate desirable microbial system (currently three systems are available

which have been mentioned in previous subsections). There are two parameters needed to

instantiate this class: Name of the microbial system (its class should be instantiated either

directly or by assigning it to a variable beforehand.) and the time-step.

Example: workflow 1 = MicrobialSystemWorkflow(SingleChamberElectrolysisCell(),

(0, 152))

In above example, a single chamber microbial system with time-steps in range zero

and 152 has been simulated. There are different outputs available: CSV file or a Pandas

dataframe. It is only needed to call the method.

Example: workflow 1.system output csv()

The above example put out a CSV file including the resulted dataset.

5

https://rs-loy-gitlab.concordia.ca/alireza.adli/microbial-system-workflow


The plotting() method can be called and used in different ways. The program will ask

the user about the desirable plot. The plot can be saved if True has been assigned to the

save plot keyword argument. The default value is False.

Example: workflow 1.plotting(save plot=True)

3 3rd Party Software

Following Python packages have been used to develop the project, and are needed to

run the project’s program:

• pandas

• numpy

• scipy

• matplotlib

Python packages are free and accessible from www.pypi.org. They can be also installed

directly from pycharm, pip or Anaconda prompt.

4 Input Data

All the three systems have been designed based on one litre of wastewater as input,

by default. But they can be also run with any other amount of wastewater. In this case

number of inhabitants and water consumption should be input when instantiating a system.

Influent flow is computed by multiplying number of inhabitants by the amount of water

consumption. This has been developed as a method of the project’s workflow (workflow

will be explained in the XXX section). Below table shows project’s parameters and their

corresponding names in the Python program.

6

https://pypi.org/


Table 1: Input parameters and their corresponding data members and/or method in the
Python program.

Parameter (unit) Python

Number of inhabitants number of inhabitants

Water consumption (litre) water consumption

Influent flow (litre) influent flow

5 Constants

The systems are working at their best performance with a number of constants (based

on the conducted research project). These constants are represented in four following ta-

bles: constants which are common among the three systems with same values (table 2),

constants which are common among the systems but with different values (table 3), con-

stants which are specific to microbial electrolysis systems (table 4), and constants which

are specific to the microbial fuel cell (table 5).

Table 2: Common constants between the three microbial systems (which have the same
values), along with their corresponding data members in the Python program.

Constant (unit) Python

F (C/mole) faraday

R1 (J/mole.K) ideal gas

m (mole e−/mole H2) electrons per mole

KMEC (mg M/L) mediator half

Kd,a (1/d) andophilic decay

7



Ks,a (mg S/L) andophilic half

Ks,m (mg S/L) methanogenic half

Xmax,1 (mg S/L) andophilic limitation

µmax,a (1/d) andophilic max growth

γ (mg M/mole M−1) mediator molar mass

α1 andophilic biofilm retention

α2 methanogenic biofilm retention

SA (m2) anode surface area

Table 3: Common constants between the three microbial systems (which have different
values), along with their corresponding data members in the Python program.

Constant (unit) Python

MT (mg M/mg X−1) mediator fraction

Kd,m (1/d) methanogenic decay

KR (L/mg X) curve slope

qmax,a (mg S/mg X d) andophilic reaction max

qmax,m (mg S/mg X d) methanogenic reaction max

Rmin (Ω) resistance min

Rmax (Ω) resistance max

Vr (L) reactor volume

Yh (ml H2/mg X) hydrogen yield

YM (mg M/mole A−1) mediator yield

µmax,m (1/d) methanogenic max growth

MOx0 oxidized mediator initial

8



Xa0 (mg/L) andophilic population initial

Xm0 (mg/L) methanogenic population initial

IMEC&IMFC (A) initial current density

Finlet influent flow initial

Table 4: Microbial Electrolysis Cell systems’ constants and their corresponding data mem-
bers in the Python program.

Constant (unit) Python

F1 (A.d/mole) faraday ec

R1 (J/mole.K) ideal gas ec

H2 (mg A/L) hydrogen 2 saturation

Eapp (V ) applied potential

ECEF (V ) counter electromotive force

[H2] (mg/L) hydrogen 2 dissolved

Kh (mg/L) hydrogenotrophic half

Kd,h (1/d) hydrogenotrophic decay

Xmax,2 (mg X/L) max biomass

Yh (ml H2/mg X) hydrogen yield methanogenic

YH2 hydrogen yield

β oxidation coefficient

S0 (mg/L) acetate initial

Xh0 mg/L hydrogenotrophic population initial

9



Table 5: Constants and their corresponding data members in the Python program Python
program Python program.

Constant (unit) Python

Emin (V ) e ocv min

Emax (V ) e ocv max

KX (L/mg X) steepness

Xmax,m (mg X/L) biofilm space limitation

ECEF (V ) counter electromotive force

[H2] (mg/L) hydrogen 2 dissolved

Kh (mg/L) hydrogenotrophic half

Kd,h (1/d) hydrogenotrophic decay

Xmax,2 (mg X/L) max biomass

Yh (ml H2/mg X) hydrogen yield methanogenic

YH2 hydrogen yield

β oxidation coefficient

S0 (mg/L) acetate initial

Xh0 mg/L hydrogenotrophic population initial

6 Output Data

The output of each system can be reached either through a pandas dataframe or a Comma

Separated Value (CSV). After instantiating MicrobialSystemWorkflow class, below meth-

ods return the corresponding system’s output pandas dataframe:

• single chamber dataframe()

10



• dual chamber dataframe()

• fuel cell dataframe()

system output csv() return output CSV file, based on the system model that has been

chosen in instantiation. Table 6 shows output data names as in the pandas dataframe and

CSV files with their corresponding data members in Python and parameter names in the

project report. It should be mentioned that, for all the three systems, acetate has been

considered as the main substrate. This has been referred in the report’s formulas with ’S’.

Time is also a timestep from the whole number of iterations.

Table 6: Output data of a single chamber microbial electrolysis system

Parameter (unit) Python CSV

t time Time
(S) (mgs/L) acetate Acetate (mg s/L)
(Xa) (mgx/L) andophilic population Andophilic Population (mg x/L)
S (mg/L) methanogenic popoulation Methanogenic Popoulation (1/d)
S (mg/L) acetate Acetate (mg s/L)

7 Limitations

Limitations have not been defined for the project.

8 Technical Performance

The output will be achieved almost less than five seconds. The performance can be slightly

different based on different inputs for time intervals.

11


	Model Description
	The Project Structure
	MicrobialSystem
	SingleChamberElectrolysisCell
	DualChamberElectrolysisCell
	FuelCell
	MicrobialSystemWorkflow

	3rd Party Software
	Input Data
	Constants
	Output Data
	Limitations
	Technical Performance

