fix: update the class with the new algorithm
This commit is contained in:
parent
6e1b8aadf0
commit
885491e39a
|
@ -1,7 +1,6 @@
|
|||
import json
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
from shapely.geometry import Polygon, Point, LineString, MultiPoint
|
||||
from shapely.geometry import Polygon, Point, LineString
|
||||
import networkx as nx
|
||||
|
||||
|
||||
|
@ -11,7 +10,7 @@ class DistrictHeatingNetworkCreator:
|
|||
Initialize the class with paths to the buildings and roads data files.
|
||||
|
||||
:param buildings_file: Path to the GeoJSON file containing building data.
|
||||
:param roads_file: Path to the Shapefile containing road data.
|
||||
:param roads_file: Path to the GeoJSON file containing roads data.
|
||||
"""
|
||||
self.buildings_file = buildings_file
|
||||
self.roads_file = roads_file
|
||||
|
@ -23,9 +22,12 @@ class DistrictHeatingNetworkCreator:
|
|||
"""
|
||||
self._load_and_process_data()
|
||||
self._find_nearest_roads()
|
||||
self._process_intersections()
|
||||
network_graph = self._create_network_graph()
|
||||
return network_graph
|
||||
self._find_nearest_points()
|
||||
self._break_down_roads()
|
||||
self._create_graph()
|
||||
self._create_mst()
|
||||
self._iteratively_remove_edges()
|
||||
return self.final_mst
|
||||
|
||||
def _load_and_process_data(self):
|
||||
"""
|
||||
|
@ -36,154 +38,199 @@ class DistrictHeatingNetworkCreator:
|
|||
city = json.load(file)
|
||||
|
||||
# Extract centroids and building IDs from building data
|
||||
centroids = []
|
||||
building_ids = [] # List to store building IDs
|
||||
self.centroids = []
|
||||
self.building_ids = [] # List to store building IDs
|
||||
buildings = city['features']
|
||||
for building in buildings:
|
||||
coordinates = building['geometry']['coordinates'][0]
|
||||
building_polygon = Polygon(coordinates)
|
||||
centroid = building_polygon.centroid
|
||||
centroids.append(centroid)
|
||||
building_ids.append(building['id']) # Extract building ID
|
||||
|
||||
# Convert centroids to a GeoDataFrame and include building IDs
|
||||
self.centroids_gdf = gpd.GeoDataFrame({
|
||||
'geometry': [Point(centroid.x, centroid.y) for centroid in centroids],
|
||||
'building_id': building_ids # Add building IDs as a column
|
||||
}, crs='EPSG:4326')
|
||||
self.centroids.append(centroid)
|
||||
self.building_ids.append(building['id']) # Extract building ID
|
||||
|
||||
# Load road data
|
||||
self.gdf_road = gpd.read_file(self.roads_file)
|
||||
with open(self.roads_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
|
||||
# Ensure centroids are in the same CRS as roads
|
||||
self.centroids_gdf = self.centroids_gdf.to_crs(self.gdf_road.crs)
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
# Create a list of LineString objects and their properties
|
||||
self.lines = []
|
||||
for feature in line_features:
|
||||
# Create a LineString from coordinates
|
||||
linestring = LineString(feature['geometry']['coordinates'])
|
||||
self.lines.append(linestring)
|
||||
|
||||
self.cleaned_lines = []
|
||||
for line in self.lines:
|
||||
coords = list(line.coords)
|
||||
cleaned_line = LineString([coords[0], coords[-1]])
|
||||
self.cleaned_lines.append(cleaned_line)
|
||||
|
||||
def _find_nearest_roads(self):
|
||||
"""
|
||||
Find the nearest road for each building centroid.
|
||||
"""
|
||||
# Process road geometries
|
||||
self.gdf_clean = gpd.GeoDataFrame(
|
||||
{'geometry': [LineString([coord for coord in line.coords]) for line in self.gdf_road.geometry]})
|
||||
self.closest_roads = []
|
||||
unique_roads_set = set()
|
||||
|
||||
# Loop through each centroid
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf') # Start with a large number to ensure any real distance is smaller
|
||||
closest_road = None
|
||||
|
||||
# Loop through each road and calculate the distance to the current centroid
|
||||
for line in self.cleaned_lines:
|
||||
distance = line.distance(centroid)
|
||||
# Check if the current road is closer than the ones previously checked
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = line
|
||||
|
||||
# Add the closest road to the list if it's not already added
|
||||
if closest_road and closest_road.wkt not in unique_roads_set:
|
||||
unique_roads_set.add(closest_road.wkt)
|
||||
self.closest_roads.append(closest_road)
|
||||
|
||||
def _find_nearest_points(self):
|
||||
"""
|
||||
Find the nearest point on each closest road for each centroid.
|
||||
"""
|
||||
def find_nearest_point_on_line(point, line):
|
||||
return line.interpolate(line.project(point))
|
||||
|
||||
# Find the nearest road line and point for each centroid
|
||||
self.closest_linestrings = []
|
||||
self.nearest_points = []
|
||||
for centroid in self.centroids_gdf.geometry:
|
||||
closest_road = min(self.gdf_clean.geometry, key=lambda x: x.distance(centroid))
|
||||
self.closest_linestrings.append(closest_road)
|
||||
nearest_point = closest_road.interpolate(closest_road.project(centroid))
|
||||
self.nearest_points.append(nearest_point)
|
||||
|
||||
def _process_intersections(self):
|
||||
# Find the nearest point on each closest road for each centroid
|
||||
for centroid in self.centroids:
|
||||
# Find the closest road for this centroid
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for road in self.closest_roads:
|
||||
distance = centroid.distance(road)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
# Find the nearest point on the closest road
|
||||
if closest_road:
|
||||
nearest_point = find_nearest_point_on_line(centroid, closest_road)
|
||||
self.nearest_points.append(nearest_point)
|
||||
|
||||
def _break_down_roads(self):
|
||||
"""
|
||||
Process intersections and create final geometries.
|
||||
Break down roads into segments connecting nearest points.
|
||||
"""
|
||||
# Create additional GeoDataFrames for points and nearest points
|
||||
self.gdf_pts = gpd.GeoDataFrame(
|
||||
{'geometry': [Point(coord) for line in self.gdf_clean.geometry for coord in line.coords]})
|
||||
self.gdf_pts2 = gpd.GeoDataFrame({'geometry': self.nearest_points})
|
||||
|
||||
# Combine nearest points and road points into one GeoDataFrame
|
||||
self.gdf_pts3 = gpd.GeoDataFrame({'geometry': self.nearest_points + list(self.gdf_pts.geometry)})
|
||||
def break_down_roads(closest_roads, nearest_points_list):
|
||||
new_segments = []
|
||||
for road in closest_roads:
|
||||
# Get coordinates of the road
|
||||
coords = list(road.coords)
|
||||
# Find all nearest points for this road
|
||||
points_on_road = [point for point in nearest_points_list if road.distance(point) < 0.000000001]
|
||||
# Sort nearest points along the road
|
||||
sorted_points = sorted(points_on_road, key=lambda point: road.project(point))
|
||||
# Add the start node to the sorted points
|
||||
sorted_points.insert(0, Point(coords[0]))
|
||||
# Add the end node to the sorted points
|
||||
sorted_points.append(Point(coords[-1]))
|
||||
# Create new segments
|
||||
for i in range(len(sorted_points) - 1):
|
||||
segment = LineString([sorted_points[i], sorted_points[i + 1]])
|
||||
new_segments.append(segment)
|
||||
return new_segments
|
||||
|
||||
# Identify intersections and create LineStrings based on intersections
|
||||
self.gdf_clean["intersect"] = [
|
||||
[y for y in range(len(self.gdf_pts2)) if self.gdf_pts2.geometry[y].distance(geom) <= 1.0] for geom in
|
||||
self.gdf_clean.geometry]
|
||||
self.gdf_cleaner = self.gdf_clean[self.gdf_clean["intersect"].apply(len).gt(0)].reset_index(drop=True)
|
||||
# Create new segments
|
||||
self.new_segments = break_down_roads(self.closest_roads, self.nearest_points)
|
||||
self.cleaned_lines = [line for line in self.cleaned_lines if line not in self.closest_roads]
|
||||
self.cleaned_lines.extend(self.new_segments)
|
||||
|
||||
self.test_list = []
|
||||
for idx, row in self.gdf_cleaner.iterrows():
|
||||
for i in range(len(row["intersect"]) + 1):
|
||||
if i == 0:
|
||||
self.test_list.append(
|
||||
LineString([row['geometry'].coords[0], self.gdf_pts3.geometry[row['intersect'][i]]]))
|
||||
elif i < len(row['intersect']):
|
||||
self.test_list.append(LineString(
|
||||
[self.gdf_pts3.geometry[row['intersect'][i - 1]], self.gdf_pts3.geometry[row['intersect'][i]]]))
|
||||
else:
|
||||
self.test_list.append(
|
||||
LineString([self.gdf_pts3.geometry[row['intersect'][i - 1]], row['geometry'].coords[-1]]))
|
||||
|
||||
self.gdf_cleanest = gpd.GeoDataFrame({'geometry': self.test_list})
|
||||
|
||||
points = [coord for geom in self.gdf_cleanest.geometry for coord in geom.coords]
|
||||
gdf_pts_cnt = self.gdf_pts.copy()
|
||||
gdf_pts_cnt["count"] = gdf_pts_cnt.geometry.apply(lambda x: points.count(x.coords[0]))
|
||||
gdf_pts_reset = gdf_pts_cnt[gdf_pts_cnt["count"] > 1].reset_index(drop=True)
|
||||
gdf_pts_drop = gdf_pts_cnt[gdf_pts_cnt["count"] <= 1].reset_index(drop=True)
|
||||
|
||||
# Remove unnecessary geometries from gdf_cleanest
|
||||
for idx, geom in self.gdf_cleanest.iterrows():
|
||||
for coord in geom.geometry.coords:
|
||||
if coord in [pt.coords[0] for pt in gdf_pts_drop.geometry]:
|
||||
self.gdf_cleanest = self.gdf_cleanest.drop(idx)
|
||||
|
||||
self.gdf_cleanest.reset_index(drop=True, inplace=True)
|
||||
|
||||
def _create_network_graph(self):
|
||||
def _create_graph(self):
|
||||
"""
|
||||
Create a NetworkX graph from the processed geospatial data.
|
||||
:return: A NetworkX graph representing the district heating network.
|
||||
Create a NetworkX graph from the cleaned lines.
|
||||
"""
|
||||
G = nx.Graph()
|
||||
self.G = nx.Graph()
|
||||
|
||||
# Convert centroids to EPSG:4326 for Google Maps compatibility
|
||||
for idx, row in self.centroids_gdf.iterrows():
|
||||
building_name = f"Building_{idx + 1}"
|
||||
G.add_node((row.geometry.x, row.geometry.y),
|
||||
type='centroid',
|
||||
name=building_name,
|
||||
building_id=row['building_id']) # Add building ID as an attribute
|
||||
# Add edges to the graph from the cleaned lines
|
||||
for line in self.cleaned_lines:
|
||||
coords = list(line.coords)
|
||||
for i in range(len(coords) - 1):
|
||||
self.G.add_edge(coords[i], coords[i + 1], weight=Point(coords[i]).distance(Point(coords[i + 1])))
|
||||
|
||||
for point in self.nearest_points:
|
||||
G.add_node((point.x, point.y), type='nearest_point')
|
||||
def _create_mst(self):
|
||||
"""
|
||||
Create a Minimum Spanning Tree (MST) from the graph.
|
||||
"""
|
||||
|
||||
# Add edges with lengths as weights for the road network
|
||||
for line in self.gdf_cleanest.geometry:
|
||||
length = line.length
|
||||
if isinstance(line.boundary, MultiPoint):
|
||||
# Handle MultiPoint boundary
|
||||
points = list(line.boundary.geoms)
|
||||
for i in range(len(points) - 1):
|
||||
start_point = points[i]
|
||||
end_point = points[i + 1]
|
||||
G.add_edge((start_point.x, start_point.y), (end_point.x, end_point.y), weight=length)
|
||||
else:
|
||||
# Handle typical case with two endpoints
|
||||
start_point, end_point = line.boundary
|
||||
G.add_edge((start_point.x, start_point.y), (end_point.x, end_point.y), weight=length)
|
||||
def find_paths_between_nearest_points(g, nearest_points):
|
||||
edges = []
|
||||
for i, start_point in enumerate(nearest_points):
|
||||
start = (start_point.x, start_point.y)
|
||||
for end_point in nearest_points[i + 1:]:
|
||||
end = (end_point.x, end_point.y)
|
||||
if nx.has_path(g, start, end):
|
||||
path = nx.shortest_path(g, source=start, target=end, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
edges.extend((u, v, g[u][v]['weight']) for u, v in path_edges)
|
||||
return edges
|
||||
|
||||
# Add edges connecting nearest points to their centroids
|
||||
for point, centroid in zip(self.nearest_points, self.centroids_gdf.geometry):
|
||||
distance = point.distance(centroid)
|
||||
G.add_edge((point.x, point.y), (centroid.x, centroid.y), weight=distance)
|
||||
# Find the edges used to connect the nearest points
|
||||
edges = find_paths_between_nearest_points(self.G, self.nearest_points)
|
||||
|
||||
return G
|
||||
# Create a graph from these edges
|
||||
h = nx.Graph()
|
||||
h.add_weighted_edges_from(edges)
|
||||
|
||||
def plot_network_graph(self, network_graph):
|
||||
# Compute the Minimum Spanning Tree (MST) using Kruskal's algorithm
|
||||
mst = nx.minimum_spanning_tree(h, weight='weight')
|
||||
|
||||
# Perform pathfinding again on the MST to ensure shortest paths within the MST
|
||||
final_edges = []
|
||||
for u, v in mst.edges():
|
||||
if nx.has_path(self.G, u, v):
|
||||
path = nx.shortest_path(self.G, source=u, target=v, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
final_edges.extend((x, y, self.G[x][y]['weight']) for x, y in path_edges)
|
||||
|
||||
# Create the final MST graph with these edges
|
||||
self.final_mst = nx.Graph()
|
||||
self.final_mst.add_weighted_edges_from(final_edges)
|
||||
|
||||
def _iteratively_remove_edges(self):
|
||||
"""
|
||||
Iteratively remove edges that do not have any nearest points and have one end with only one connection.
|
||||
Also remove nodes that don't have any connections.
|
||||
"""
|
||||
nearest_points_tuples = [(point.x, point.y) for point in self.nearest_points]
|
||||
|
||||
def find_edges_to_remove(graph):
|
||||
edges_to_remove = []
|
||||
for u, v in graph.edges():
|
||||
if u not in nearest_points_tuples and v not in nearest_points_tuples:
|
||||
if graph.degree(u) == 1 or graph.degree(v) == 1:
|
||||
edges_to_remove.append((u, v))
|
||||
return edges_to_remove
|
||||
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
|
||||
while edges_to_remove:
|
||||
self.final_mst.remove_edges_from(edges_to_remove)
|
||||
# Find and remove nodes with no connections
|
||||
nodes_to_remove = [node for node in self.final_mst.nodes() if self.final_mst.degree(node) == 0]
|
||||
self.final_mst.remove_nodes_from(nodes_to_remove)
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
|
||||
def plot_network_graph(self):
|
||||
"""
|
||||
Plot the network graph using matplotlib and networkx.
|
||||
|
||||
:param network_graph: The NetworkX graph to be plotted.
|
||||
"""
|
||||
plt.figure(figsize=(12, 12))
|
||||
pos = {node: (node[0], node[1]) for node in network_graph.nodes()}
|
||||
plt.figure(figsize=(15, 10))
|
||||
pos = {node: (node[0], node[1]) for node in self.final_mst.nodes()}
|
||||
|
||||
# Draw nodes and edges
|
||||
nx.draw_networkx_nodes(network_graph, pos, node_color='blue', node_size=50)
|
||||
nx.draw_networkx_edges(network_graph, pos, edge_color='gray')
|
||||
|
||||
# Create a dictionary for node labels for centroids only
|
||||
node_labels = {node: data['name'] for node, data in network_graph.nodes(data=True) if
|
||||
data.get('type') == 'centroid'}
|
||||
|
||||
# Adjust node label positions to reduce overlap
|
||||
label_pos = {node: (coords[0], coords[1] + 0.03) for node, coords in pos.items()} # Shift labels up
|
||||
|
||||
# Draw node labels for centroids
|
||||
nx.draw_networkx_labels(network_graph, label_pos, labels=node_labels, font_size=8, verticalalignment='bottom')
|
||||
nx.draw_networkx_nodes(self.final_mst, pos, node_color='blue', node_size=50)
|
||||
nx.draw_networkx_edges(self.final_mst, pos, edge_color='gray')
|
||||
|
||||
plt.title('District Heating Network Graph')
|
||||
plt.axis('off')
|
||||
|
|
|
@ -5,7 +5,7 @@ import json
|
|||
|
||||
def road_processor(x, y, diff):
|
||||
"""
|
||||
Processes a GeoJSON file to find roads that have at least one node within a specified polygon.
|
||||
Processes a .JSON file to find roads that have at least one node within a specified polygon.
|
||||
|
||||
Parameters:
|
||||
x (float): The x-coordinate of the center of the selection box.
|
||||
|
|
19
main.py
19
main.py
|
@ -1,13 +1,12 @@
|
|||
from DistrictHeatingNetworkCreator import DistrictHeatingNetworkCreator
|
||||
# building_file = "./input_files/buildings.geojson"
|
||||
# road_file = "./input_files/roads/geobase_mtl.shp"
|
||||
# Initialize the class
|
||||
network_creator = DistrictHeatingNetworkCreator(
|
||||
'./input_files/buildings.geojson',
|
||||
'./input_files/roads.json'
|
||||
)
|
||||
from Scripts.road_processor import road_processor
|
||||
from pathlib import Path
|
||||
|
||||
# Create the network graph
|
||||
network_graph = network_creator.run()
|
||||
|
||||
network_creator.plot_network_graph(network_graph)
|
||||
roads_file = road_processor(-73.61038745537758, 45.484399882086215, 0.001)
|
||||
|
||||
buildings_file = Path('./input_files/buildings.geojson').resolve()
|
||||
|
||||
dhn_creator = DistrictHeatingNetworkCreator(buildings_file, roads_file)
|
||||
network_graph = dhn_creator.run()
|
||||
dhn_creator.plot_network_graph()
|
||||
|
|
Loading…
Reference in New Issue
Block a user