feature: addi error handling
Adding error handling and loggings. Also refactors the names and locations. Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/a_rezaei/district_heating_network_analysis/pulls/4
This commit is contained in:
parent
97a43a3036
commit
b92767a9eb
|
@ -1,282 +0,0 @@
|
|||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
from shapely.geometry import Polygon, Point, LineString
|
||||
import networkx as nx
|
||||
from typing import List, Tuple
|
||||
from rtree import index
|
||||
import math
|
||||
|
||||
|
||||
def haversine(lon1, lat1, lon2, lat2):
|
||||
"""
|
||||
Calculate the great-circle distance between two points
|
||||
on the Earth specified by their longitude and latitude.
|
||||
"""
|
||||
R = 6371000 # Radius of the Earth in meters
|
||||
phi1 = math.radians(lat1)
|
||||
phi2 = math.radians(lat2)
|
||||
delta_phi = math.radians(lat2 - lat1)
|
||||
delta_lambda = math.radians(lon2 - lon1)
|
||||
|
||||
a = math.sin(delta_phi / 2.0) ** 2 + \
|
||||
math.cos(phi1) * math.cos(phi2) * \
|
||||
math.sin(delta_lambda / 2.0) ** 2
|
||||
|
||||
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
|
||||
return R * c # Output distance in meters
|
||||
|
||||
|
||||
class DistrictHeatingNetworkCreator:
|
||||
def __init__(self, buildings_file: str, roads_file: str):
|
||||
"""
|
||||
Initialize the class with paths to the buildings and roads data files.
|
||||
|
||||
:param buildings_file: Path to the GeoJSON file containing building data.
|
||||
:param roads_file: Path to the GeoJSON file containing roads data.
|
||||
"""
|
||||
self.buildings_file = buildings_file
|
||||
self.roads_file = roads_file
|
||||
|
||||
def run(self) -> nx.Graph:
|
||||
"""
|
||||
Main method to execute the district heating network creation process.
|
||||
:return: NetworkX graph with nodes and edges representing the network.
|
||||
"""
|
||||
self._load_and_process_data()
|
||||
self._find_nearest_roads()
|
||||
self._find_nearest_points()
|
||||
self._break_down_roads()
|
||||
self._create_graph()
|
||||
self._create_mst()
|
||||
self._iteratively_remove_edges()
|
||||
self._add_centroids_to_mst()
|
||||
self._convert_edge_weights_to_meters()
|
||||
return self.final_mst
|
||||
|
||||
def _load_and_process_data(self):
|
||||
"""
|
||||
Load and process the building and road data.
|
||||
"""
|
||||
# Load building data
|
||||
with open(self.buildings_file, 'r') as file:
|
||||
city = json.load(file)
|
||||
|
||||
self.centroids = []
|
||||
self.building_ids = []
|
||||
buildings = city['features']
|
||||
for building in buildings:
|
||||
coordinates = building['geometry']['coordinates'][0]
|
||||
building_polygon = Polygon(coordinates)
|
||||
centroid = building_polygon.centroid
|
||||
self.centroids.append(centroid)
|
||||
self.building_ids.append(building['id'])
|
||||
|
||||
# Load road data
|
||||
with open(self.roads_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
self.lines = [LineString(feature['geometry']['coordinates']) for feature in line_features]
|
||||
self.cleaned_lines = [LineString([line.coords[0], line.coords[-1]]) for line in self.lines]
|
||||
|
||||
def _find_nearest_roads(self):
|
||||
"""
|
||||
Find the nearest road for each building centroid.
|
||||
"""
|
||||
self.closest_roads = []
|
||||
unique_roads_set = set()
|
||||
|
||||
# Create spatial index for roads
|
||||
idx = index.Index()
|
||||
for pos, line in enumerate(self.cleaned_lines):
|
||||
idx.insert(pos, line.bounds)
|
||||
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for pos in idx.nearest(centroid.bounds, 10):
|
||||
road = self.cleaned_lines[pos]
|
||||
distance = road.distance(centroid)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road and closest_road.wkt not in unique_roads_set:
|
||||
unique_roads_set.add(closest_road.wkt)
|
||||
self.closest_roads.append(closest_road)
|
||||
|
||||
def _find_nearest_points(self):
|
||||
"""
|
||||
Find the nearest point on each closest road for each centroid.
|
||||
"""
|
||||
def find_nearest_point_on_line(point: Point, line: LineString) -> Point:
|
||||
return line.interpolate(line.project(point))
|
||||
|
||||
self.nearest_points = []
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for road in self.closest_roads:
|
||||
distance = centroid.distance(road)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road:
|
||||
nearest_point = find_nearest_point_on_line(centroid, closest_road)
|
||||
self.nearest_points.append(nearest_point)
|
||||
|
||||
def _break_down_roads(self):
|
||||
"""
|
||||
Break down roads into segments connecting nearest points.
|
||||
"""
|
||||
def break_down_roads(closest_roads: List[LineString], nearest_points_list: List[Point]) -> List[LineString]:
|
||||
new_segments = []
|
||||
for road in closest_roads:
|
||||
coords = list(road.coords)
|
||||
points_on_road = [point for point in nearest_points_list if road.distance(point) < 0.000000001]
|
||||
sorted_points = sorted(points_on_road, key=lambda point: road.project(point))
|
||||
sorted_points.insert(0, Point(coords[0]))
|
||||
sorted_points.append(Point(coords[-1]))
|
||||
for i in range(len(sorted_points) - 1):
|
||||
segment = LineString([sorted_points[i], sorted_points[i + 1]])
|
||||
new_segments.append(segment)
|
||||
return new_segments
|
||||
|
||||
self.new_segments = break_down_roads(self.closest_roads, self.nearest_points)
|
||||
self.cleaned_lines = [line for line in self.cleaned_lines if line not in self.closest_roads]
|
||||
self.cleaned_lines.extend(self.new_segments)
|
||||
|
||||
def _create_graph(self):
|
||||
"""
|
||||
Create a NetworkX graph from the cleaned lines.
|
||||
"""
|
||||
self.G = nx.Graph()
|
||||
for line in self.cleaned_lines:
|
||||
coords = list(line.coords)
|
||||
for i in range(len(coords) - 1):
|
||||
self.G.add_edge(coords[i], coords[i + 1], weight=Point(coords[i]).distance(Point(coords[i + 1])))
|
||||
|
||||
def _create_mst(self):
|
||||
"""
|
||||
Create a Minimum Spanning Tree (MST) from the graph.
|
||||
"""
|
||||
def find_paths_between_nearest_points(g: nx.Graph, nearest_points: List[Point]) -> List[Tuple]:
|
||||
edges = []
|
||||
for i, start_point in enumerate(nearest_points):
|
||||
start = (start_point.x, start_point.y)
|
||||
for end_point in nearest_points[i + 1:]:
|
||||
end = (end_point.x, end_point.y)
|
||||
if nx.has_path(g, start, end):
|
||||
path = nx.shortest_path(g, source=start, target=end, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
edges.extend((u, v, g[u][v]['weight']) for u, v in path_edges)
|
||||
return edges
|
||||
|
||||
edges = find_paths_between_nearest_points(self.G, self.nearest_points)
|
||||
h = nx.Graph()
|
||||
h.add_weighted_edges_from(edges)
|
||||
mst = nx.minimum_spanning_tree(h, weight='weight')
|
||||
final_edges = []
|
||||
for u, v in mst.edges():
|
||||
if nx.has_path(self.G, u, v):
|
||||
path = nx.shortest_path(self.G, source=u, target=v, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
final_edges.extend((x, y, self.G[x][y]['weight']) for x, y in path_edges)
|
||||
self.final_mst = nx.Graph()
|
||||
self.final_mst.add_weighted_edges_from(final_edges)
|
||||
|
||||
def _iteratively_remove_edges(self):
|
||||
"""
|
||||
Iteratively remove edges that do not have any nearest points and have one end with only one connection.
|
||||
Also remove nodes that don't have any connections and street nodes with only one connection.
|
||||
"""
|
||||
nearest_points_tuples = [(point.x, point.y) for point in self.nearest_points]
|
||||
|
||||
def find_edges_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
edges_to_remove = []
|
||||
for u, v, d in graph.edges(data=True):
|
||||
if u not in nearest_points_tuples and v not in nearest_points_tuples:
|
||||
if graph.degree(u) == 1 or graph.degree(v) == 1:
|
||||
edges_to_remove.append((u, v, d))
|
||||
return edges_to_remove
|
||||
|
||||
def find_nodes_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
nodes_to_remove = []
|
||||
for node in graph.nodes():
|
||||
if graph.degree(node) == 0:
|
||||
nodes_to_remove.append(node)
|
||||
return nodes_to_remove
|
||||
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps = [list(self.final_mst.edges(data=True))]
|
||||
|
||||
while edges_to_remove or find_nodes_to_remove(self.final_mst):
|
||||
self.final_mst.remove_edges_from(edges_to_remove)
|
||||
nodes_to_remove = find_nodes_to_remove(self.final_mst)
|
||||
self.final_mst.remove_nodes_from(nodes_to_remove)
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
|
||||
def find_single_connection_street_nodes(graph: nx.Graph) -> List[Tuple]:
|
||||
single_connection_street_nodes = []
|
||||
for node in graph.nodes():
|
||||
if node not in nearest_points_tuples and graph.degree(node) == 1:
|
||||
single_connection_street_nodes.append(node)
|
||||
return single_connection_street_nodes
|
||||
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
|
||||
while single_connection_street_nodes:
|
||||
for node in single_connection_street_nodes:
|
||||
neighbors = list(self.final_mst.neighbors(node))
|
||||
self.final_mst.remove_node(node)
|
||||
for neighbor in neighbors:
|
||||
if self.final_mst.degree(neighbor) == 0:
|
||||
self.final_mst.remove_node(neighbor)
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
|
||||
def _add_centroids_to_mst(self):
|
||||
"""
|
||||
Add centroids to the final MST graph and connect them to their associated node on the graph.
|
||||
"""
|
||||
for i, centroid in enumerate(self.centroids):
|
||||
centroid_tuple = (centroid.x, centroid.y)
|
||||
building_id = self.building_ids[i]
|
||||
self.final_mst.add_node(centroid_tuple, type='building', id=building_id)
|
||||
nearest_point = None
|
||||
min_distance = float('inf')
|
||||
for node in self.final_mst.nodes():
|
||||
if self.final_mst.nodes[node].get('type') != 'building':
|
||||
node_point = Point(node)
|
||||
distance = centroid.distance(node_point)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
nearest_point = node
|
||||
|
||||
if nearest_point:
|
||||
self.final_mst.add_edge(centroid_tuple, nearest_point, weight=min_distance)
|
||||
|
||||
def _convert_edge_weights_to_meters(self):
|
||||
"""
|
||||
Convert all edge weights in the final MST graph to meters using the Haversine formula.
|
||||
"""
|
||||
for u, v, data in self.final_mst.edges(data=True):
|
||||
lon1, lat1 = u
|
||||
lon2, lat2 = v
|
||||
distance = haversine(lon1, lat1, lon2, lat2)
|
||||
self.final_mst[u][v]['weight'] = distance
|
||||
|
||||
def plot_network_graph(self):
|
||||
"""
|
||||
Plot the network graph using matplotlib and networkx.
|
||||
"""
|
||||
plt.figure(figsize=(15, 10))
|
||||
pos = {node: (node[0], node[1]) for node in self.final_mst.nodes()}
|
||||
nx.draw_networkx_nodes(self.final_mst, pos, node_color='blue', node_size=50)
|
||||
nx.draw_networkx_edges(self.final_mst, pos, edge_color='gray')
|
||||
plt.title('District Heating Network Graph')
|
||||
plt.axis('off')
|
||||
plt.show()
|
|
@ -23,8 +23,9 @@ To use the `DistrictHeatingNetworkCreator`, follow these steps:
|
|||
3. Optionally, call the `plot_network_graph` method to visualize the network.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
from DistrictHeatingNetworkCreator import DistrictHeatingNetworkCreator
|
||||
from scripts.district_heating_network_creator import DistrictHeatingNetworkCreator
|
||||
|
||||
# Initialize the class
|
||||
network_creator = DistrictHeatingNetworkCreator('path/to/buildings.geojson', 'path/to/montreal_roads.shp')
|
||||
|
|
6
main.py
6
main.py
|
@ -1,8 +1,8 @@
|
|||
from DistrictHeatingNetworkCreator import DistrictHeatingNetworkCreator
|
||||
from Scripts.road_processor import road_processor
|
||||
from scripts.district_heating_network_creator import DistrictHeatingNetworkCreator
|
||||
from scripts.road_processor import road_processor
|
||||
from pathlib import Path
|
||||
import time
|
||||
from Scripts.geojson_graph_creator import networkx_to_geojson
|
||||
from scripts.geojson_graph_creator import networkx_to_geojson
|
||||
location = [45.51663850312751, -73.59854314961274]
|
||||
start_time = time.perf_counter()
|
||||
roads_file = road_processor(location[1], location[0], 0.001)
|
||||
|
|
326
scripts/district_heating_network_creator.py
Normal file
326
scripts/district_heating_network_creator.py
Normal file
|
@ -0,0 +1,326 @@
|
|||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
from shapely.geometry import Polygon, Point, LineString
|
||||
import networkx as nx
|
||||
from typing import List, Tuple
|
||||
from rtree import index
|
||||
import math
|
||||
import logging
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
logging.getLogger('numexpr').setLevel(logging.ERROR)
|
||||
|
||||
def haversine(lon1, lat1, lon2, lat2):
|
||||
"""
|
||||
Calculate the great-circle distance between two points
|
||||
on the Earth specified by their longitude and latitude.
|
||||
"""
|
||||
R = 6371000 # Radius of the Earth in meters
|
||||
phi1 = math.radians(lat1)
|
||||
phi2 = math.radians(lat2)
|
||||
delta_phi = math.radians(lat2 - lat1)
|
||||
delta_lambda = math.radians(lon2 - lon1)
|
||||
|
||||
a = math.sin(delta_phi / 2.0) ** 2 + \
|
||||
math.cos(phi1) * math.cos(phi2) * \
|
||||
math.sin(delta_lambda / 2.0) ** 2
|
||||
|
||||
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
|
||||
return R * c # Output distance in meters
|
||||
|
||||
|
||||
class DistrictHeatingNetworkCreator:
|
||||
def __init__(self, buildings_file: str, roads_file: str):
|
||||
"""
|
||||
Initialize the class with paths to the buildings and roads data files.
|
||||
|
||||
:param buildings_file: Path to the GeoJSON file containing building data.
|
||||
:param roads_file: Path to the GeoJSON file containing roads data.
|
||||
"""
|
||||
self.buildings_file = buildings_file
|
||||
self.roads_file = roads_file
|
||||
|
||||
def run(self) -> nx.Graph:
|
||||
"""
|
||||
Main method to execute the district heating network creation process.
|
||||
:return: NetworkX graph with nodes and edges representing the network.
|
||||
"""
|
||||
try:
|
||||
self._load_and_process_data()
|
||||
self._find_nearest_roads()
|
||||
self._find_nearest_points()
|
||||
self._break_down_roads()
|
||||
self._create_graph()
|
||||
self._create_mst()
|
||||
self._iteratively_remove_edges()
|
||||
self._add_centroids_to_mst()
|
||||
self._convert_edge_weights_to_meters()
|
||||
return self.final_mst
|
||||
except Exception as e:
|
||||
logging.error(f"Error during network creation: {e}")
|
||||
raise
|
||||
|
||||
def _load_and_process_data(self):
|
||||
"""
|
||||
Load and process the building and road data.
|
||||
"""
|
||||
try:
|
||||
# Load building data
|
||||
with open(self.buildings_file, 'r') as file:
|
||||
city = json.load(file)
|
||||
|
||||
self.centroids = []
|
||||
self.building_ids = []
|
||||
buildings = city['features']
|
||||
for building in buildings:
|
||||
coordinates = building['geometry']['coordinates'][0]
|
||||
building_polygon = Polygon(coordinates)
|
||||
centroid = building_polygon.centroid
|
||||
self.centroids.append(centroid)
|
||||
self.building_ids.append(building['id'])
|
||||
|
||||
# Load road data
|
||||
with open(self.roads_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
self.lines = [LineString(feature['geometry']['coordinates']) for feature in line_features]
|
||||
self.cleaned_lines = [LineString([line.coords[0], line.coords[-1]]) for line in self.lines]
|
||||
except Exception as e:
|
||||
logging.error(f"Error loading and processing data: {e}")
|
||||
raise
|
||||
|
||||
def _find_nearest_roads(self):
|
||||
"""
|
||||
Find the nearest road for each building centroid.
|
||||
"""
|
||||
try:
|
||||
self.closest_roads = []
|
||||
unique_roads_set = set()
|
||||
|
||||
# Create spatial index for roads
|
||||
idx = index.Index()
|
||||
for pos, line in enumerate(self.cleaned_lines):
|
||||
idx.insert(pos, line.bounds)
|
||||
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for pos in idx.nearest(centroid.bounds, 10):
|
||||
road = self.cleaned_lines[pos]
|
||||
distance = road.distance(centroid)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road and closest_road.wkt not in unique_roads_set:
|
||||
unique_roads_set.add(closest_road.wkt)
|
||||
self.closest_roads.append(closest_road)
|
||||
except Exception as e:
|
||||
logging.error(f"Error finding nearest roads: {e}")
|
||||
raise
|
||||
|
||||
def _find_nearest_points(self):
|
||||
"""
|
||||
Find the nearest point on each closest road for each centroid.
|
||||
"""
|
||||
def find_nearest_point_on_line(point: Point, line: LineString) -> Point:
|
||||
return line.interpolate(line.project(point))
|
||||
|
||||
try:
|
||||
self.nearest_points = []
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for road in self.closest_roads:
|
||||
distance = centroid.distance(road)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road:
|
||||
nearest_point = find_nearest_point_on_line(centroid, closest_road)
|
||||
self.nearest_points.append(nearest_point)
|
||||
except Exception as e:
|
||||
logging.error(f"Error finding nearest points: {e}")
|
||||
raise
|
||||
|
||||
def _break_down_roads(self):
|
||||
"""
|
||||
Break down roads into segments connecting nearest points.
|
||||
"""
|
||||
def break_down_roads(closest_roads: List[LineString], nearest_points_list: List[Point]) -> List[LineString]:
|
||||
new_segments = []
|
||||
for road in closest_roads:
|
||||
coords = list(road.coords)
|
||||
points_on_road = [point for point in nearest_points_list if road.distance(point) < 0.000000001]
|
||||
sorted_points = sorted(points_on_road, key=lambda point: road.project(point))
|
||||
sorted_points.insert(0, Point(coords[0]))
|
||||
sorted_points.append(Point(coords[-1]))
|
||||
for i in range(len(sorted_points) - 1):
|
||||
segment = LineString([sorted_points[i], sorted_points[i + 1]])
|
||||
new_segments.append(segment)
|
||||
return new_segments
|
||||
|
||||
try:
|
||||
self.new_segments = break_down_roads(self.closest_roads, self.nearest_points)
|
||||
self.cleaned_lines = [line for line in self.cleaned_lines if line not in self.closest_roads]
|
||||
self.cleaned_lines.extend(self.new_segments)
|
||||
except Exception as e:
|
||||
logging.error(f"Error breaking down roads: {e}")
|
||||
raise
|
||||
|
||||
def _create_graph(self):
|
||||
"""
|
||||
Create a NetworkX graph from the cleaned lines.
|
||||
"""
|
||||
try:
|
||||
self.G = nx.Graph()
|
||||
for line in self.cleaned_lines:
|
||||
coords = list(line.coords)
|
||||
for i in range(len(coords) - 1):
|
||||
self.G.add_edge(coords[i], coords[i + 1], weight=Point(coords[i]).distance(Point(coords[i + 1])))
|
||||
except Exception as e:
|
||||
logging.error(f"Error creating graph: {e}")
|
||||
raise
|
||||
|
||||
def _create_mst(self):
|
||||
"""
|
||||
Create a Minimum Spanning Tree (MST) from the graph.
|
||||
"""
|
||||
def find_paths_between_nearest_points(g: nx.Graph, nearest_points: List[Point]) -> List[Tuple]:
|
||||
edges = []
|
||||
for i, start_point in enumerate(nearest_points):
|
||||
start = (start_point.x, start_point.y)
|
||||
for end_point in nearest_points[i + 1:]:
|
||||
end = (end_point.x, end_point.y)
|
||||
if nx.has_path(g, start, end):
|
||||
path = nx.shortest_path(g, source=start, target=end, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
edges.extend((u, v, g[u][v]['weight']) for u, v in path_edges)
|
||||
return edges
|
||||
|
||||
try:
|
||||
edges = find_paths_between_nearest_points(self.G, self.nearest_points)
|
||||
h = nx.Graph()
|
||||
h.add_weighted_edges_from(edges)
|
||||
mst = nx.minimum_spanning_tree(h, weight='weight')
|
||||
final_edges = []
|
||||
for u, v in mst.edges():
|
||||
if nx.has_path(self.G, u, v):
|
||||
path = nx.shortest_path(self.G, source=u, target=v, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
final_edges.extend((x, y, self.G[x][y]['weight']) for x, y in path_edges)
|
||||
self.final_mst = nx.Graph()
|
||||
self.final_mst.add_weighted_edges_from(final_edges)
|
||||
except Exception as e:
|
||||
logging.error(f"Error creating MST: {e}")
|
||||
raise
|
||||
|
||||
def _iteratively_remove_edges(self):
|
||||
"""
|
||||
Iteratively remove edges that do not have any nearest points and have one end with only one connection.
|
||||
Also remove nodes that don't have any connections and street nodes with only one connection.
|
||||
"""
|
||||
nearest_points_tuples = [(point.x, point.y) for point in self.nearest_points]
|
||||
|
||||
def find_edges_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
edges_to_remove = []
|
||||
for u, v, d in graph.edges(data=True):
|
||||
if u not in nearest_points_tuples and v not in nearest_points_tuples:
|
||||
if graph.degree(u) == 1 or graph.degree(v) == 1:
|
||||
edges_to_remove.append((u, v, d))
|
||||
return edges_to_remove
|
||||
|
||||
def find_nodes_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
nodes_to_remove = []
|
||||
for node in graph.nodes():
|
||||
if graph.degree(node) == 0:
|
||||
nodes_to_remove.append(node)
|
||||
return nodes_to_remove
|
||||
|
||||
try:
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps = [list(self.final_mst.edges(data=True))]
|
||||
|
||||
while edges_to_remove or find_nodes_to_remove(self.final_mst):
|
||||
self.final_mst.remove_edges_from(edges_to_remove)
|
||||
nodes_to_remove = find_nodes_to_remove(self.final_mst)
|
||||
self.final_mst.remove_nodes_from(nodes_to_remove)
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
|
||||
def find_single_connection_street_nodes(graph: nx.Graph) -> List[Tuple]:
|
||||
single_connection_street_nodes = []
|
||||
for node in graph.nodes():
|
||||
if node not in nearest_points_tuples and graph.degree(node) == 1:
|
||||
single_connection_street_nodes.append(node)
|
||||
return single_connection_street_nodes
|
||||
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
|
||||
while single_connection_street_nodes:
|
||||
for node in single_connection_street_nodes:
|
||||
neighbors = list(self.final_mst.neighbors(node))
|
||||
self.final_mst.remove_node(node)
|
||||
for neighbor in neighbors:
|
||||
if self.final_mst.degree(neighbor) == 0:
|
||||
self.final_mst.remove_node(neighbor)
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
except Exception as e:
|
||||
logging.error(f"Error iteratively removing edges: {e}")
|
||||
raise
|
||||
|
||||
def _add_centroids_to_mst(self):
|
||||
"""
|
||||
Add centroids to the final MST graph and connect them to their associated node on the graph.
|
||||
"""
|
||||
try:
|
||||
for i, centroid in enumerate(self.centroids):
|
||||
centroid_tuple = (centroid.x, centroid.y)
|
||||
building_id = self.building_ids[i]
|
||||
self.final_mst.add_node(centroid_tuple, type='building', id=building_id)
|
||||
nearest_point = None
|
||||
min_distance = float('inf')
|
||||
for node in self.final_mst.nodes():
|
||||
if self.final_mst.nodes[node].get('type') != 'building':
|
||||
node_point = Point(node)
|
||||
distance = centroid.distance(node_point)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
nearest_point = node
|
||||
|
||||
if nearest_point:
|
||||
self.final_mst.add_edge(centroid_tuple, nearest_point, weight=min_distance)
|
||||
except Exception as e:
|
||||
logging.error(f"Error adding centroids to MST: {e}")
|
||||
raise
|
||||
|
||||
def _convert_edge_weights_to_meters(self):
|
||||
"""
|
||||
Convert all edge weights in the final MST graph to meters using the Haversine formula.
|
||||
"""
|
||||
try:
|
||||
for u, v, data in self.final_mst.edges(data=True):
|
||||
lon1, lat1 = u
|
||||
lon2, lat2 = v
|
||||
distance = haversine(lon1, lat1, lon2, lat2)
|
||||
self.final_mst[u][v]['weight'] = distance
|
||||
except Exception as e:
|
||||
logging.error(f"Error converting edge weights to meters: {e}")
|
||||
raise
|
||||
|
||||
def plot_network_graph(self):
|
||||
"""
|
||||
Plot the network graph using matplotlib and networkx.
|
||||
"""
|
||||
plt.figure(figsize=(15, 10))
|
||||
pos = {node: (node[0], node[1]) for node in self.final_mst.nodes()}
|
||||
nx.draw_networkx_nodes(self.final_mst, pos, node_color='blue', node_size=50)
|
||||
nx.draw_networkx_edges(self.final_mst, pos, edge_color='gray')
|
||||
plt.title('District Heating Network Graph')
|
||||
plt.axis('off')
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user