migrate_to_mongo/main.py

119 lines
6.4 KiB
Python
Raw Normal View History

2024-06-22 11:15:44 -04:00
import datetime
import psycopg2
from pymongo import MongoClient
from co2_emission.co2_emission import Co2Emission
from costs.cost import Cost
from building import Building
from city_object import CityObject
from hub.catalog_factories.energy_systems_catalog_factory import EnergySystemsCatalogFactory
def calculate_building(building_info, building_results, scenario_id):
energy_systems_catalog = EnergySystemsCatalogFactory('montreal_custom').catalog
archetype = energy_systems_catalog.get_entry(building_info.system_name)
mockup_building = Building(building_info, building_results, archetype)
life_cycle = Cost(mockup_building, retrofit_scenario=scenario_id).life_cycle
operational_co2 = Co2Emission(mockup_building).operational_co2
global_capital_costs = life_cycle[f'Scenario {scenario_id}']['global_capital_costs']
global_operational_costs = life_cycle[f'Scenario {scenario_id}']['global_operational_costs']
global_capital_incomes = life_cycle[f'Scenario {scenario_id}']['global_capital_incomes']
global_maintenance_costs = life_cycle[f'Scenario {scenario_id}']['global_maintenance_costs']
building_results['total_heating_area'] = building_info.total_heating_area
building_results['year_of_construction'] = building_info.year_of_construction
building_results['function'] = building_info.function
building_results['costs'] = {
'total_capital_costs_skin': life_cycle[f'Scenario {scenario_id}']['total_capital_costs_skin'],
'total_capital_costs_systems': life_cycle[f'Scenario {scenario_id}']['total_capital_costs_systems'],
'end_of_life_costs': life_cycle[f'Scenario {scenario_id}']['end_of_life_costs'],
'total_operational_costs': life_cycle[f'Scenario {scenario_id}']['total_operational_costs'],
'total_maintenance_costs': life_cycle[f'Scenario {scenario_id}']['total_maintenance_costs'],
'operational_incomes': life_cycle[f'Scenario {scenario_id}']['operational_incomes'],
'capital_incomes': life_cycle[f'Scenario {scenario_id}']['capital_incomes'],
'global_capital_costs': {
'B2010_opaque_walls': global_capital_costs['B2010_opaque_walls'].tolist(),
'B2020_transparent': global_capital_costs['B2020_transparent'].tolist(),
'B3010_opaque_roof': global_capital_costs['B3010_opaque_roof'].tolist(),
'B10_superstructure': global_capital_costs['B10_superstructure'].tolist(),
'D3020_heat_generating_systems': global_capital_costs['D3020_heat_generating_systems'].tolist(),
'D3030_cooling_generation_systems': global_capital_costs['D3030_cooling_generation_systems'].tolist(),
'D3080_other_hvac_ahu': global_capital_costs['D3080_other_hvac_ahu'].tolist(),
'D5020_lighting_and_branch_wiring': global_capital_costs['D5020_lighting_and_branch_wiring'].tolist(),
'D301010_photovoltaic_system': global_capital_costs['D301010_photovoltaic_system'].tolist(),
},
'global_end_of_life_costs': life_cycle[f'Scenario {scenario_id}']['global_end_of_life_costs'][
'End_of_life_costs'].tolist(),
'global_operational_costs': {
'fixed_costs_electricity_peak': global_operational_costs['Fixed_costs_electricity_peak'].tolist(),
'fixed_costs_electricity_monthly': global_operational_costs['Fixed_costs_electricity_monthly'].tolist(),
'variable_costs_electricity': global_operational_costs['Variable_costs_electricity'].tolist(),
'fixed_costs_gas': global_operational_costs['Fixed_costs_gas'].tolist(),
'variable_costs_gas': global_operational_costs['Variable_costs_gas'].tolist()
},
'global_maintenance_costs': {
'heating_maintenance': global_maintenance_costs['Heating_maintenance'].tolist(),
'cooling_maintenance': global_maintenance_costs['Cooling_maintenance'].tolist(),
'pv_maintenance': global_maintenance_costs['PV_maintenance'].tolist(),
},
'global_operational_incomes': life_cycle[f'Scenario {scenario_id}']['global_operational_incomes'][
'Incomes electricity'].tolist(),
'global_capital_incomes': {
'subsidies_construction': global_capital_incomes['Subsidies construction'].tolist(),
'subsidies_hvac': global_capital_incomes['Subsidies HVAC'].tolist(),
'subsidies_pv': global_capital_incomes['Subsidies PV'].tolist()
}
}
building_results['operational_co2'] = operational_co2
start = datetime.datetime.now()
scenario_ids = {'current status': 0,
'skin retrofit': 1,
'system retrofit and pv': 2,
'skin and system retrofit with pv': 3
}
connection = psycopg2.connect(database='montreal_retrofit', user='retrofit', password='C3rcIT$vc#', host='127.0.0.1',
port=5432)
cursor = connection.cursor()
client = MongoClient('mongodb://localhost:27017/')
montreal_retrofit_db = client.montreal_retrofit
meb_collection = montreal_retrofit_db.me
cursor.execute("SELECT id, scenario FROM city where scenario <> 'current status';")
cities = cursor.fetchall()
for city in cities:
cursor.execute(
f'SELECT DISTINCT id, name, aliases, year_of_construction, function, usage, volume, area, total_heating_area, '
f'wall_area, windows_area, roof_area, total_pv_area, system_name FROM city_object WHERE city_id = {city[0]}')
buildings = cursor.fetchall()
for building in buildings:
cursor.execute(f'SELECT values FROM simulation_results WHERE city_object_id = {building[0]};')
values = cursor.fetchall()
for value in values:
building_data = {'city_id': city[0], 'name': building[1], 'alias': building[2].split(',')[0][1:],
'year_of_construction': building[3],
'function': building[4], 'usage': building[5], 'volume': building[6], 'area': building[7],
'total_heating_area': building[8], 'wall_area': building[9], 'windows_area': building[10],
'roof_area': building[11], 'total_pv_area': building[12], 'system_name': building[13],
'scenario': city[1]}
city_object = CityObject(building_data)
results = values[0][0]
try:
calculate_building(city_object, results, scenario_ids[city[1]])
except KeyError:
pass
building_data['insel meb'] = results['insel meb']
building_data['costs'] = results['costs']
building_data['operational_co2'] = results['operational_co2']
try:
montreal_retrofit_db[f'meb_{city[1].replace(" ", "_")}'].insert_one(building_data)
except:
pass
print(f'Completed in: {datetime.datetime.now() - start}')