dynamic_building_simulation/weather/weather.py

35 lines
1.5 KiB
Python
Raw Normal View History

2020-05-18 13:56:54 -04:00
import math
import pandas as pd
import helpers.constants as cte
from helpers import monthly_values as mv
class Weather(object):
def __init__(self, full_path_weather):
self._full_path_weather = full_path_weather
if self._full_path_weather is not None:
# TODO: catch error if file does not exist
self._weather_values = pd.read_csv(self._full_path_weather, sep='\s+', header=None,
names=['hour', 'global_horiz', 'temperature', 'diffuse', 'beam', 'empty'])
self._weather_values = pd.concat([mv.MonthlyValues().month_hour, self._weather_values], axis=1)
@property
def weather_temperatures(self):
temperatures_hourly = self._weather_values[['month', 'temperature']]
sky_temperature = self.calculate_sky_temperature(temperatures_hourly)
temperatures_hourly = pd.concat([temperatures_hourly, sky_temperature], axis=1)
return temperatures_hourly
@staticmethod
def calculate_sky_temperature(ambient_temperature):
# Swinbank - Fuentes sky model approximation(1963) based on cloudiness statistics(32 %) in United States
# ambient temperatures( in °C)
# sky temperatures( in °C)
_ambient_temperature = ambient_temperature[['temperature']].to_numpy()
values = []
for temperature in _ambient_temperature:
value = 0.037536 * math.pow((temperature + cte.celsius2kelvin), 1.5) \
+ 0.32 * (temperature + cte.celsius2kelvin) - cte.celsius2kelvin
values.append(value)
return pd.DataFrame(values, columns=['sky temperature'])