Remove bad integrated files

This commit is contained in:
Guille Gutierrez 2020-05-19 11:23:59 -04:00
parent a5257c69d1
commit f67e6ac043
29 changed files with 0 additions and 2208 deletions

View File

@ -1,163 +0,0 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented
by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser General
Public License, and the "GNU GPL" refers to version 3 of the GNU General Public
License.
"The Library" refers to a covered work governed by this License, other than
an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided by the
Library, but which is not otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode of using an interface provided
by the Library.
A "Combined Work" is a work produced by combining or linking an Application
with the Library. The particular version of the Library with which the Combined
Work was made is also called the "Linked Version".
The "Minimal Corresponding Source" for a Combined Work means the Corresponding
Source for the Combined Work, excluding any source code for portions of the
Combined Work that, considered in isolation, are based on the Application,
and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the object
code and/or source code for the Application, including any data and utility
programs needed for reproducing the Combined Work from the Application, but
excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License without
being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a facility
refers to a function or data to be supplied by an Application that uses the
facility (other than as an argument passed when the facility is invoked),
then you may convey a copy of the modified version:
a) under this License, provided that you make a good faith effort to ensure
that, in the event an Application does not supply the function or data, the
facility still operates, and performs whatever part of its purpose remains
meaningful, or
b) under the GNU GPL, with none of the additional permissions of this License
applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from a header
file that is part of the Library. You may convey such object code under terms
of your choice, provided that, if the incorporated material is not limited
to numerical parameters, data structure layouts and accessors, or small macros,
inline functions and templates (ten or fewer lines in length), you do both
of the following:
a) Give prominent notice with each copy of the object code that the Library
is used in it and that the Library and its use are covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that, taken together,
effectively do not restrict modification of the portions of the Library contained
in the Combined Work and reverse engineering for debugging such modifications,
if you also do each of the following:
a) Give prominent notice with each copy of the Combined Work that the Library
is used in it and that the Library and its use are covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during execution, include
the copyright notice for the Library among these notices, as well as a reference
directing the user to the copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this License,
and the Corresponding Application Code in a form suitable for, and under terms
that permit, the user to recombine or relink the Application with a modified
version of the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
1) Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (a) uses at run time a copy of the Library
already present on the user's computer system, and (b) will operate properly
with a modified version of the Library that is interface-compatible with the
Linked Version.
e) Provide Installation Information, but only if you would otherwise be required
to provide such information under section 6 of the GNU GPL, and only to the
extent that such information is necessary to install and execute a modified
version of the Combined Work produced by recombining or relinking the Application
with a modified version of the Linked Version. (If you use option 4d0, the
Installation Information must accompany the Minimal Corresponding Source and
Corresponding Application Code. If you use option 4d1, you must provide the
Installation Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the Library side
by side in a single library together with other library facilities that are
not Applications and are not covered by this License, and convey such a combined
library under terms of your choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities, conveyed under the
terms of this License.
b) Give prominent notice with the combined library that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions of the
GNU Lesser General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.
Each version is given a distinguishing version number. If the Library as you
received it specifies that a certain numbered version of the GNU Lesser General
Public License "or any later version" applies to it, you have the option of
following the terms and conditions either of that published version or of
any later version published by the Free Software Foundation. If the Library
as you received it does not specify a version number of the GNU Lesser General
Public License, you may choose any version of the GNU Lesser General Public
License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide whether
future versions of the GNU Lesser General Public License shall apply, that
proxy's public statement of acceptance of any version is permanent authorization
for you to choose that version for the Library.

View File

@ -1,3 +0,0 @@
# CityModelStructure
Contains the City model classes and components use along with other simulation projects, this repository is intended to be used as a submodule

View File

@ -1,43 +0,0 @@
from city_model_structure.city_object import CityObject
from typing import List, Union
class City:
def __init__(self, lower_corner, upper_corner, city_objects, srs_name):
self._city_objects = None
self._name = None
self._lower_corner = lower_corner
self._upper_corner = upper_corner
self._city_objects = city_objects
self._srs_name = srs_name
@property
def city_objects(self) -> List[CityObject]:
return self._city_objects
@property
def lower_corner(self):
return self._lower_corner
@property
def upper_corner(self):
return self._upper_corner
def city_object(self, name) -> Union[CityObject, None]:
for c in self.city_objects:
if c.name == name:
return c
return None
@property
def srs_name(self):
return self._srs_name
@property
def name(self):
return self._name
@name.setter
def name(self, value):
self._name = value

View File

@ -1,193 +0,0 @@
from matplotlib import pylab
from city_model_structure.polyhedron import Polyhedron
from city_model_structure.thermal_zone import ThermalZone
from city_model_structure.thermal_boundary import ThermalBoundary
from city_model_structure.surface import Surface
from shapely import ops
from shapely.geometry import MultiPolygon
import numpy as np
from pathlib import Path
import matplotlib.patches as patches
from helpers.geometry import Geometry
from city_model_structure.usage_zone import UsageZone
from typing import Union, List
class CityObject:
def __init__(self, name, lod, surfaces, terrains, year_of_construction, function, attic_heated=0, basement_heated=0):
self._name = name
self._lod = lod
self._surfaces = surfaces
self._polyhedron = None
self._basement_heated = basement_heated
self._attic_heated = attic_heated
self._terrains = terrains
self._year_of_construction = year_of_construction
self._function = function
self._geometry = Geometry()
self._average_storey_height = None
self._storeys_above_ground = None
self._foot_print = None
self._usage_zones = []
# ToDo: Check this for LOD4
self._thermal_zones = []
if self.lod < 8:
# for lod under 4 is just one thermal zone
self._thermal_zones.append(ThermalZone(self.surfaces))
for t in self._thermal_zones:
t.bounded = [ThermalBoundary(s, [t]) for s in t.surfaces]
surface_id = 0
for s in self._surfaces:
s.parent(self, surface_id)
surface_id += 1
@property
def usage_zones(self) -> List[UsageZone]:
return self._usage_zones
@usage_zones.setter
def usage_zones(self, value):
self._usage_zones = value
@property
def terrains(self) -> List[Surface]:
return self._terrains
@property
def attic_heated(self):
return self._attic_heated
@attic_heated.setter
def attic_heated(self, value):
self._attic_heated = value
@property
def basement_heated(self):
return self._basement_heated
@basement_heated.setter
def basement_heated(self, value):
self._attic_heated = value
@property
def name(self):
return self._name
@property
def lod(self):
return self._lod
@property
def surfaces(self) -> List[Surface]:
return self._surfaces
def surface(self, name) -> Union[Surface, None]:
for s in self.surfaces:
if s.name == name:
return s
return None
@property
def thermal_zones(self) -> List[ThermalZone]:
return self._thermal_zones
@property
def volume(self):
if self._polyhedron is None:
self._polyhedron = Polyhedron(self.surfaces)
return self._polyhedron.volume
@property
def heated_volume(self):
if self._polyhedron is None:
self._polyhedron = Polyhedron(self.surfaces)
# ToDo: this need to be the calculated based on the basement and attic heated values
return self._polyhedron.volume
def stl_export(self, path):
if self._polyhedron is None:
self._polyhedron = Polyhedron(self.surfaces)
full_path = (Path(path) / (self._name + '.stl')).resolve()
self._polyhedron.save(full_path)
@property
def year_of_construction(self):
return self._year_of_construction
@property
def function(self):
return self._function
@property
def average_storey_height(self):
return self._average_storey_height
@average_storey_height.setter
def average_storey_height(self, value):
self._average_storey_height = value
@property
def storeys_above_ground(self):
return self._storeys_above_ground
@storeys_above_ground.setter
def storeys_above_ground(self, value):
self._storeys_above_ground = value
@staticmethod
def _tuple_to_point(xy_tuple):
return [xy_tuple[0], xy_tuple[1], 0.0]
def _plot(self, polygon):
points = ()
for point_tuple in polygon.exterior.coords:
almost_equal = False
for point in points:
p1 = CityObject._tuple_to_point(point)
p2 = CityObject._tuple_to_point(point_tuple)
if self._geometry.almost_equal(p1, p2):
almost_equal = True
break
if not almost_equal:
points = points + (point_tuple,)
points = points + (points[0],)
pylab.scatter([point[0] for point in points], [point[1] for point in points])
pylab.gca().add_patch(patches.Polygon(points, closed=True, fill=True))
pylab.grid()
pylab.show()
@property
def foot_print(self) -> Surface:
if self._foot_print is None:
shapelys = []
union = None
for surface in self.surfaces:
if surface.shapely.is_empty or not surface.shapely.is_valid:
continue
shapelys.append(surface.shapely)
union = ops.unary_union(shapelys)
shapelys = [union]
if type(union) == MultiPolygon:
Exception('foot print returns a multipolygon')
points_list = []
for point_tuple in union.exterior.coords:
# ToDo: should be Z 0.0 or min Z?
point = CityObject._tuple_to_point(point_tuple)
almost_equal = False
for existing_point in points_list:
if self._geometry.almost_equal(point, existing_point):
almost_equal = True
break
if not almost_equal:
points_list.append(point)
points_list = np.reshape(points_list, len(points_list) * 3)
points = np.array_str(points_list).replace('[', '').replace(']', '')
self._foot_print = Surface(points, remove_last=False, is_projected=True)
return self._foot_print
@property
def max_height(self):
if self._polyhedron is None:
self._polyhedron = Polyhedron(self.surfaces)
return self._polyhedron.max_z

View File

@ -1,38 +0,0 @@
class InternalGains:
def __init__(self):
self._average_internal_gain_w_m2 = None
self._convective_fraction = None
self._radiative_fraction = None
self._latent_fraction = None
@property
def average_internal_gain_w_m2(self):
return self._average_internal_gain_w_m2
@average_internal_gain_w_m2.setter
def average_internal_gain_w_m2(self, value):
self._average_internal_gain_w_m2 = value
@property
def convective_fraction(self):
return self._convective_fraction
@convective_fraction.setter
def convective_fraction(self, value):
self._convective_fraction = value
@property
def radiative_fraction(self):
return self._radiative_fraction
@radiative_fraction.setter
def radiative_fraction(self, value):
self._radiative_fraction = value
@property
def latent_fraction(self):
return self._latent_fraction
@latent_fraction.setter
def latent_fraction(self, value):
self._latent_fraction = value

View File

@ -1,23 +0,0 @@
from city_model_structure.material import Material
class Layer:
def __init__(self):
self._material = None
self._thickness_m = None
@property
def material(self) -> Material:
return self._material
@material.setter
def material(self, value):
self._material = value
@property
def thickness_m(self):
return self._thickness_m
@thickness_m.setter
def thickness_m(self, value):
self._thickness_m = value

View File

@ -1,75 +0,0 @@
class Material:
def __init__(self):
# ToDo: construct this class
self._conductivity_wm_k = None
self._specific_heat_jkg_k = None
self._density_kg_m3 = None
self._solar_absorptance = None
self._thermal_absorptance = None
self._visible_absorptance = None
self._no_mass = False
self._thermal_resistance_m2k_w = None
@property
def conductivity_wm_k(self):
return self._conductivity_wm_k
@conductivity_wm_k.setter
def conductivity_wm_k(self, value):
self._conductivity_wm_k = value
@property
def specific_heat_jkg_k(self):
return self._specific_heat_jkg_k
@specific_heat_jkg_k.setter
def specific_heat_jkg_k(self, value):
self._specific_heat_jkg_k = value
@property
def density_kg_m3(self):
return self._density_kg_m3
@density_kg_m3.setter
def density_kg_m3(self, value):
self._density_kg_m3 = value
@property
def solar_absorptance(self):
return self._solar_absorptance
@solar_absorptance.setter
def solar_absorptance(self, value):
self._solar_absorptance = value
@property
def thermal_absorptance(self):
return self._thermal_absorptance
@thermal_absorptance.setter
def thermal_absorptance(self, value):
self._thermal_absorptance = value
@property
def visible_absorptance(self):
return self._visible_absorptance
@visible_absorptance.setter
def visible_absorptance(self, value):
self._visible_absorptance = value
@property
def no_mass(self):
return self._no_mass
@no_mass.setter
def no_mass(self, value):
self._no_mass = value
@property
def thermal_resistance_m2k_w(self):
return self._thermal_resistance_m2k_w
@thermal_resistance_m2k_w.setter
def thermal_resistance_m2k_w(self, value):
self._thermal_resistance_m2k_w = value

View File

@ -1,74 +0,0 @@
import numpy as np
import stl
from helpers.geometry import Geometry
class Polyhedron:
def __init__(self, surfaces):
self._surfaces = [s for s in surfaces]
self._polygons = [s.polygon for s in surfaces]
self._polyhedron = None
self._volume = None
self._faces = None
self._vertices = None
self._mesh = None
self._geometry = Geometry()
def _position_of(self, point):
vertices = self.vertices
for i in range(len(vertices)):
if self._geometry.almost_equal(vertices[i], point):
return i
return -1
@property
def vertices(self):
if self._vertices is None:
vertices, self._vertices = [], []
[vertices.extend(s.points) for s in self._surfaces]
for v1 in vertices:
found = False
for v2 in self._vertices:
found = False
if self._geometry.almost_equal(v1, v2):
found = True
break
if not found:
self._vertices.append(v1)
self._vertices = np.asarray(self._vertices)
return self._vertices
@property
def faces(self):
if self._faces is None:
self._faces = []
for s in self._surfaces:
face = []
points = s.points
for p in points:
face.append(self._position_of(p))
self._faces.append(face)
self._faces = np.asarray(self._faces)
return self._faces
@property
def _polyhedron_mesh(self):
if self._mesh is None:
self._mesh = stl.mesh.Mesh(np.zeros(self.faces.shape[0], dtype=stl.mesh.Mesh.dtype))
for i, f in enumerate(self.faces):
for j in range(3):
self._mesh.vectors[i][j] = self.vertices[f[j], :]
return self._mesh
@property
def volume(self):
if self._volume is None:
self._volume, cog, inertia = self._polyhedron_mesh.get_mass_properties()
return self._volume
@property
def max_z(self):
return self._polyhedron_mesh.z.max()
def save(self, full_path):
self._polyhedron_mesh.save(full_path)

View File

@ -1,176 +0,0 @@
from __future__ import annotations
import numpy as np
import pyny3d.geoms as pn
from helpers.geometry import Geometry
class Surface:
def __init__(self, coordinates, surface_type=None, name=None, swr='0.2', remove_last=True, is_projected=False):
self._coordinates = coordinates
self._type = surface_type
self._name = name
self._swr = swr
self._remove_last = remove_last
self._is_projected = is_projected
self._geometry = Geometry()
self._polygon = None
self._area = None
self._points = None
self._points_list = None
self._normal = None
self._azimuth = None
self._inclination = None
self._area_above_ground = None
self._area_below_ground = None
self._parent = None
self._shapely = None
self._projected_surface = None
self._global_irradiance_hour = np.zeros(8760)
self._global_irradiance_month = np.zeros(12)
def parent(self, parent, surface_id):
self._parent = parent
self._name = str(surface_id)
@property
def name(self):
if self._name is None:
raise Exception('surface has no name')
return self._name
@property
def swr(self):
return self._swr
@swr.setter
def swr(self, value):
self._swr = value
@property
def points(self):
if self._points is None:
self._points = np.fromstring(self._coordinates, dtype=float, sep=' ')
self._points = Geometry.to_points_matrix(self._points, self._remove_last)
return self._points
@property
def points_list(self):
if self._points_list is None:
s = self.points
self._points_list = np.reshape(s, len(s) * 3)
return self._points_list
@property
def polygon(self):
if self._polygon is None:
try:
self._polygon = pn.Polygon(self.points)
except ValueError:
# is not really a polygon but a line so just return none
self._polygon = None
return self._polygon
@property
def area(self):
if self._area is None:
self._area = self.polygon.get_area()
return self._area
def is_almost_same_terrain(self, terrain_points, ground_points):
equal = 0
for t in terrain_points:
for g in ground_points:
if self._geometry.almost_equal(t, g):
equal += 1
return equal == len(terrain_points)
@property
def is_terrain(self):
for t_points in self._parent.terrains:
if len(t_points) == len(self.points) and self.is_almost_same_terrain(t_points, self.points):
return True
return False
@property
def area_above_ground(self):
if self._area_above_ground is None:
self._area_above_ground = self.area - self.area_below_ground
return self._area_above_ground
@property
def area_below_ground(self):
if self._area_below_ground is None:
self._area_below_ground = 0.0
if self.is_terrain:
self._area_below_ground = self.area
return self._area_below_ground
@property
def normal(self):
if self._normal is None:
points = self.points
n = np.cross(points[1] - points[0], points[2] - points[0])
self._normal = n / np.linalg.norm(n)
return self._normal
@property
def azimuth(self):
if self._azimuth is None:
normal = self.normal
self._azimuth = np.arctan2(normal[1], normal[0])
return self._azimuth
@property
def inclination(self):
if self._inclination is None:
self._inclination = np.arccos(self.normal[2])
return self._inclination
@property
def type(self):
if self._type is None:
grad = np.rad2deg(self.inclination)
if 170 <= grad:
self._type = 'Ground'
elif 80 <= grad <= 100:
self._type = 'Wall'
else:
self._type = 'Roof'
return self._type
@property
def global_irradiance_hour(self):
return self._global_irradiance_hour
@global_irradiance_hour.setter
def global_irradiance_hour(self, value):
self._global_irradiance_hour = value
@property
def global_irradiance_month(self):
return self._global_irradiance_month
@global_irradiance_month.setter
def global_irradiance_month(self, value):
self._global_irradiance_month = value
@property
def shapely(self):
if self.polygon is None:
return None
if self._shapely is None:
self._shapely = self.polygon.get_shapely()
return self._shapely
@property
def projection(self) -> Surface:
if self._is_projected:
return self
if self._projected_surface is None:
coordinates = ''
for coordinate in self.shapely.exterior.coords:
if coordinates != '':
coordinates = coordinates + ' '
coordinates = coordinates + str(coordinate[0]) + ' ' + str(coordinate[1]) + ' 0.0'
self._projected_surface = Surface(coordinates)
return self._projected_surface

View File

@ -1,132 +0,0 @@
from city_model_structure.thermal_opening import ThermalOpening
from city_model_structure.surface import Surface
from city_model_structure.layer import Layer
import helpers.assumptions as assumptions
from typing import List
class ThermalBoundary:
def __init__(self, surface, delimits):
self._surface = surface
self._delimits = delimits
# ToDo: up to at least LOD2 will be just one thermal opening per Thermal boundary, review for LOD3 and LOD4
self._thermal_openings = [ThermalOpening()]
self._layers = None
self._outside_solar_absorptance = None
self._outside_thermal_absorptance = None
self._outside_visible_absorptance = None
self._window_ratio = None
self._u_value = None
self._window_area = None
self._shortwave_reflectance = None
@property
def delimits(self) -> List[Surface]:
return self._delimits
@property
def azimuth(self):
return self._surface.azimuth
@property
def inclination(self):
return self._surface.inclination
@property
def area(self):
return self._surface.area
@property
def area_above_ground(self):
return self._surface.area_above_ground
@property
def area_below_ground(self):
return self._surface.area_below_ground
@property
def outside_solar_absorptance(self):
return self._outside_solar_absorptance
@outside_solar_absorptance.setter
def outside_solar_absorptance(self, value):
self._outside_solar_absorptance = value
@property
def outside_thermal_absorptance(self):
return self._outside_thermal_absorptance
@outside_thermal_absorptance.setter
def outside_thermal_absorptance(self, value):
self._outside_thermal_absorptance = value
@property
def outside_visible_absorptance(self):
return self._outside_visible_absorptance
@outside_visible_absorptance.setter
def outside_visible_absorptance(self, value):
self._outside_visible_absorptance = value
@property
def thermal_openings(self) -> List[ThermalOpening]:
return self._thermal_openings
@thermal_openings.setter
def thermal_openings(self, value):
self._thermal_openings = value
@property
def layers(self) -> List[Layer]:
return self._layers
@layers.setter
def layers(self, value):
self._layers = value
@property
def type(self):
return self._surface.type
@property
def window_ratio(self):
return self._window_ratio
@window_ratio.setter
def window_ratio(self, value):
self._window_ratio = value
@property
def window_area(self):
if self._window_area is None:
try:
self._window_area = float(self._surface.area) * float(self.window_ratio)
except TypeError:
raise Exception('Window ratio is not defined or invalid surface area')
return self._window_area
@property
def u_value(self):
if self._u_value is None:
h_i = assumptions.h_i
h_e = assumptions.h_e
r_value = 1.0/h_i + 1.0/h_e
try:
for layer in self.layers:
if layer.material.no_mass:
r_value += float(layer.material.thermal_resistance_m2k_w)
else:
r_value = r_value + float(layer.material.conductivity_wm_k)/float(layer.thickness_m)
self._u_value = 1.0/r_value
except TypeError:
raise Exception('Constructions layers are not initialized')
return self._u_value
@property
def shortwave_reflectance(self):
if self._shortwave_reflectance is None:
try:
self._shortwave_reflectance = 1.0 - float(self.outside_solar_absorptance)
except TypeError:
raise Exception('Outside solar absorptance is not initialized')
return self._shortwave_reflectance

View File

@ -1,90 +0,0 @@
import helpers.assumptions as assumptions
class ThermalOpening:
def __init__(self):
self._area = None
self._openable_ratio = None
self._conductivity_w_mk = None
self._frame_ratio = assumptions.frame_ratio
self._g_value = None
self._thickness_m = None
self._inside_reflectance = None
self._outside_reflectance = None
self._u_value = None
@property
def area(self):
return self._area
@area.setter
def area(self, value):
self._area = value
@property
def openable_ratio(self):
raise Exception('Not implemented')
@openable_ratio.setter
def openable_ratio(self, value):
raise Exception('Not implemented')
@property
def conductivity_w_mk(self):
return self._conductivity_w_mk
@conductivity_w_mk.setter
def conductivity_w_mk(self, value):
self._conductivity_w_mk = value
@property
def frame_ratio(self):
return self._frame_ratio
@frame_ratio.setter
def frame_ratio(self, value):
self._frame_ratio = value
@property
def g_value(self):
return self._g_value
@g_value.setter
def g_value(self, value):
self._g_value = value
@property
def thickness_m(self):
return self._thickness_m
@thickness_m.setter
def thickness_m(self, value):
self._thickness_m = value
@property
def inside_reflectance(self):
return self._inside_reflectance
@inside_reflectance.setter
def inside_reflectance(self, value):
self._inside_reflectance = value
@property
def outside_reflectance(self):
return self._outside_reflectance
@outside_reflectance.setter
def outside_reflectance(self, value):
self._outside_reflectance = value
@property
def u_value(self):
if self._u_value is None:
try:
h_i = assumptions.h_i
h_e = assumptions.h_e
r_value = 1 / h_i + 1 / h_e + float(self.conductivity_w_mk) / float(self.thickness_m)
self._u_value = 1 / r_value
except TypeError:
Exception('Thermal opening is not initialized')
return self._u_value

View File

@ -1,86 +0,0 @@
from typing import List
from city_model_structure.thermal_boundary import ThermalBoundary
class ThermalZone:
def __init__(self, surfaces, heated=True, cooled=True):
self._surfaces = surfaces
self._floor_area = None
self._bounded = None
self._heated = heated
self._cooled = cooled
self._additional_thermal_bridge_u_value = None
self._effective_thermal_capacity = None
self._indirectly_heated_area_ratio = None
self._infiltration_rate_system_on = None
self._infiltration_rate_system_off = None
@property
def heated(self):
return self._heated
@property
def cooled(self):
return self._cooled
@property
def floor_area(self):
if self._floor_area is None:
self._floor_area = 0
for s in self._surfaces:
if s.type == 'Ground':
self._floor_area += s.area
return self._floor_area
@property
def bounded(self) -> List[ThermalBoundary]:
return self._bounded
@bounded.setter
def bounded(self, value):
self._bounded = value
@property
def surfaces(self):
return self._surfaces
@property
def additional_thermal_bridge_u_value(self):
return self._additional_thermal_bridge_u_value
@additional_thermal_bridge_u_value.setter
def additional_thermal_bridge_u_value(self, value):
self._additional_thermal_bridge_u_value = value
@property
def effective_thermal_capacity(self):
return self._effective_thermal_capacity
@effective_thermal_capacity.setter
def effective_thermal_capacity(self, value):
self._effective_thermal_capacity = value
@property
def indirectly_heated_area_ratio(self):
return self._indirectly_heated_area_ratio
@indirectly_heated_area_ratio.setter
def indirectly_heated_area_ratio(self, value):
self._indirectly_heated_area_ratio = value
@property
def infiltration_rate_system_on(self):
return self._infiltration_rate_system_on
@infiltration_rate_system_on.setter
def infiltration_rate_system_on(self, value):
self._infiltration_rate_system_on = value
@property
def infiltration_rate_system_off(self):
return self._infiltration_rate_system_off
@infiltration_rate_system_off.setter
def infiltration_rate_system_off(self, value):
self._infiltration_rate_system_off = value

View File

@ -1,78 +0,0 @@
from city_model_structure.internal_gains import InternalGains
from typing import List
class UsageZone:
def __init__(self):
self._usage = None
self._internal_gains = None
self._heating_setpoint = None
self._heating_setback = None
self._cooling_setpoint = None
self._hours_day = None
self._days_year = None
self._mechanical_air_change = None
@property
def internal_gains(self) -> List[InternalGains]:
return self._internal_gains
@internal_gains.setter
def internal_gains(self, value):
self._internal_gains = value
@property
def heating_setpoint(self):
return self._heating_setpoint
@heating_setpoint.setter
def heating_setpoint(self, value):
self._heating_setpoint = value
@property
def heating_setback(self):
return self._heating_setback
@heating_setback.setter
def heating_setback(self, value):
self._heating_setback = value
@property
def cooling_setpoint(self):
return self._cooling_setpoint
@cooling_setpoint.setter
def cooling_setpoint(self, value):
self._cooling_setpoint = value
@property
def hours_day(self):
return self._hours_day
@hours_day.setter
def hours_day(self, value):
self._hours_day = value
@property
def days_year(self):
return self._days_year
@days_year.setter
def days_year(self, value):
self._days_year = value
@property
def mechanical_air_change(self):
return self._mechanical_air_change
@mechanical_air_change.setter
def mechanical_air_change(self, value):
self._mechanical_air_change = value
@property
def usage(self):
return self._usage
@usage.setter
def usage(self, value):
self._usage = value

View File

@ -1,70 +0,0 @@
class Window:
def __init__(self):
# ToDo: construct this class
self._conductivity_wm_k = None
self._solar_transmittance_at_normal_incidence = None
self._front_side_solar_reflectance_at_normal_incidence = None
self._back_side_solar_reflectance_at_normal_incidence = None
self._frame_ratio = None
self._thickness_m = None
self._shgc = None
@property
def conductivity_wm_k(self):
return self._conductivity_wm_k
@conductivity_wm_k.setter
def conductivity_wm_k(self, value):
self._conductivity_wm_k = value
@property
def solar_transmittance_at_normal_incidence(self):
return self._solar_transmittance_at_normal_incidence
@solar_transmittance_at_normal_incidence.setter
def solar_transmittance_at_normal_incidence(self, value):
self._solar_transmittance_at_normal_incidence = value
@property
def front_side_solar_reflectance_at_normal_incidence(self):
return self._front_side_solar_reflectance_at_normal_incidence
@front_side_solar_reflectance_at_normal_incidence.setter
def front_side_solar_reflectance_at_normal_incidence(self, value):
self._front_side_solar_reflectance_at_normal_incidence = value
@property
def back_side_solar_reflectance_at_normal_incidence(self):
return self._back_side_solar_reflectance_at_normal_incidence
@back_side_solar_reflectance_at_normal_incidence.setter
def back_side_solar_reflectance_at_normal_incidence(self, value):
self._back_side_solar_reflectance_at_normal_incidence = value
@property
def frame_ratio(self):
return self._frame_ratio
@frame_ratio.setter
def frame_ratio(self, value):
self._frame_ratio = value
@frame_ratio.setter
def frame_ratio(self, value):
self._frame_ratio = value
@property
def thickness_m(self):
return self._thickness_m
@thickness_m.setter
def thickness_m(self, value):
self._thickness_m = value
@property
def shgc(self):
return self._shgc
@shgc.setter
def shgc(self, value):
self._shgc = value

View File

@ -1,24 +0,0 @@
from geometry.geometry_feeders.city_gml import CityGml
from city_model_structure.city import City
class GeometryFactory:
def __init__(self, file_type, path):
self._file_type = file_type.lower()
self._path = path
@property
def citygml(self):
return CityGml(self._path).city
@property
def geojson(self):
raise Exception('Not implemented')
@property
def bim(self):
raise Exception('Not implemented')
@property
def city(self) -> City:
return getattr(self, self._file_type, lambda: None)

View File

@ -1,106 +0,0 @@
import xmltodict
import numpy as np
from city_model_structure.city import City
from city_model_structure.city_object import CityObject
from city_model_structure.surface import Surface
from helpers.geometry import Geometry
class CityGml:
def __init__(self, path):
self._city = None
with open(path) as gml:
# Clean the namespaces is an important task to prevent wrong ns:field due poor citygml implementations
self._gml = xmltodict.parse(gml.read(), process_namespaces=True, xml_attribs=True, namespaces={
'http://www.opengis.net/gml': None,
'http://www.w3.org/2001/XMLSchema-instance': None,
'urn:oasis:names:tc:ciq:xsdschema:xAL:2.0': None,
'http://www.w3.org/1999/xlink': None,
'http://www.opengis.net/citygml/relief/2.0': None,
'http://www.opengis.net/citygml/building/2.0': None,
'http://www.opengis.net/citygml/building/2.0 http://schemas.opengis.net/citygml/building/2.0/building.xsd '
'http://www.opengis.net/citygml/relief/2.0 http://schemas.opengis.net/citygml/relief/2.0/relief.xsd" '
'xmlns="http://www.opengis.net/citygml/2.0': None,
'http://www.opengis.net/citygml/2.0': None
}, force_list=('cityObjectMember', 'curveMember'))
self._cityObjects = None
self._geometry = Geometry()
envelope = self._gml['CityModel']['boundedBy']['Envelope']
if '#text' in envelope['lowerCorner']:
self._lower_corner = np.fromstring(envelope['lowerCorner']['#text'], dtype=float, sep=' ')
self._upper_corner = np.fromstring(envelope['upperCorner']['#text'], dtype=float, sep=' ')
else:
self._lower_corner = np.fromstring(envelope['lowerCorner'], dtype=float, sep=' ')
self._upper_corner = np.fromstring(envelope['upperCorner'], dtype=float, sep=' ')
self._srs_name = envelope['@srsName']
@property
def content(self):
return self._gml
@property
def city(self):
if self._city is None:
city_objects = []
for o in self._gml['CityModel']['cityObjectMember']:
lod = 0
if 'lod1Solid' in o['Building']:
lod += 1
if 'lod2Solid' in o['Building']:
lod += 2
if 'lod3Solid' in o['Building']:
lod += 4
if 'lod4Solid' in o['Building']:
lod += 8
# ToDo: this is specific for Lod1 need to be modeled for higher lod's and lod combinations
name = o['Building']['@id']
lod_str = 'lod' + str(lod) + 'Solid'
lod_terrain_str = 'lod' + str(lod) + 'TerrainIntersection'
try:
surfaces = [Surface(s['Polygon']['exterior']['LinearRing']['posList']['#text'])
for s in o['Building'][lod_str]['Solid']['exterior']['CompositeSurface']['surfaceMember']]
except TypeError:
surfaces = [Surface(s['Polygon']['exterior']['LinearRing']['posList'])
for s in o['Building'][lod_str]['Solid']['exterior']['CompositeSurface']['surfaceMember']]
if lod_terrain_str in o['Building']:
try:
curves = [c['LineString']['posList']['#text']
for c in o['Building'][lod_terrain_str]['MultiCurve']['curveMember']]
except TypeError:
curves = [c['LineString']['posList']
for c in o['Building'][lod_terrain_str]['MultiCurve']['curveMember']]
terrains = []
for curve in curves:
curve_points = np.fromstring(curve, dtype=float, sep=' ')
curve_points = self._geometry.to_points_matrix(curve_points, True)
terrains.append(curve_points)
else:
terrains = []
for s in surfaces:
ground = True
ground_points = []
for row in s.points:
# all surface vertex are in the lower z
ground_point = [row[0], row[1], self._lower_corner[2]]
ground_points = np.concatenate((ground_points, ground_point), axis=None)
ground = ground and self._geometry.almost_equal(row, ground_point)
if ground:
ground_points = self._geometry.to_points_matrix(ground_points)
# Do i need to remove the duplicated?
terrains.append(ground_points)
year_of_construction = None
function = None
if 'yearOfConstruction' in o['Building']:
year_of_construction = o['Building']['yearOfConstruction']
if 'function' in o['Building']:
function = o['Building']['function']
city_objects.append(CityObject(name, lod, surfaces, terrains, year_of_construction, function))
self._city = City(self._lower_corner, self._upper_corner, city_objects, self._srs_name)
return self._city

View File

@ -1,27 +0,0 @@
from physics.physics_feeders.us_new_york_city_physics_parameters import UsNewYorkCityPhysicsParameters
from physics.physics_feeders.us_physics_parameters import UsPhysicsParameters
class PhysicsFactory:
def __init__(self, handler, city):
self._handler = handler.lower().replace(' ', '_')
self._city = city
self.factory()
def us_new_york_city(self):
UsNewYorkCityPhysicsParameters(self._city)
def us(self):
UsPhysicsParameters(self._city)
def ca(self):
raise Exception('Not implemented')
def de(self):
raise Exception('Not implemented')
def es(self):
raise Exception('Not implemented')
def factory(self):
getattr(self, self._handler, lambda: None)()

View File

@ -1,228 +0,0 @@
class PlutoToFunction:
building_function = {
'A0': 'single family house',
'A1': 'single family house',
'A2': 'single family house',
'A3': 'single family house',
'A4': 'single family house',
'A5': 'single family house',
'A6': 'single family house',
'A7': 'single family house',
'A8': 'single family house',
'A9': 'single family house',
'B1': 'multifamily house',
'B2': 'multifamily house',
'B3': 'multifamily house',
'B9': 'multifamily house',
'C0': 'residential',
'C1': 'residential',
'C2': 'residential',
'C3': 'residential',
'C4': 'residential',
'C5': 'residential',
'C6': 'residential',
'C7': 'residential',
'C8': 'residential',
'C9': 'residential',
'D0': 'residential',
'D1': 'residential',
'D2': 'residential',
'D3': 'residential',
'D4': 'residential',
'D5': 'residential',
'D6': 'residential',
'D7': 'residential',
'D8': 'residential',
'D9': 'residential',
'E1': 'warehouse',
'E3': 'warehouse',
'E4': 'warehouse',
'E5': 'warehouse',
'E7': 'warehouse',
'E9': 'warehouse',
'F1': 'warehouse',
'F2': 'warehouse',
'F4': 'warehouse',
'F5': 'warehouse',
'F8': 'warehouse',
'F9': 'warehouse',
'G0': 'office',
'G1': 'office',
'G2': 'office',
'G3': 'office',
'G4': 'office',
'G5': 'office',
'G6': 'office',
'G7': 'office',
'G8': 'office',
'G9': 'office',
'H1': 'hotel',
'H2': 'hotel',
'H3': 'hotel',
'H4': 'hotel',
'H5': 'hotel',
'H6': 'hotel',
'H7': 'hotel',
'H8': 'hotel',
'H9': 'hotel',
'HB': 'hotel',
'HH': 'hotel',
'HR': 'hotel',
'HS': 'hotel',
'I1': 'hospital',
'I2': 'outpatient',
'I3': 'outpatient',
'I4': 'residential',
'I5': 'outpatient',
'I6': 'outpatient',
'I7': 'outpatient',
'I9': 'outpatient',
'J1': 'large office',
'J2': 'large office',
'J3': 'large office',
'J4': 'large office',
'J5': 'large office',
'J6': 'large office',
'J7': 'large office',
'J8': 'large office',
'J9': 'large office',
'K1': 'strip mall',
'K2': 'strip mall',
'K3': 'strip mall',
'K4': 'residential',
'K5': 'restaurant',
'K6': 'commercial',
'K7': 'commercial',
'K8': 'commercial',
'K9': 'commercial',
'L1': 'residential',
'L2': 'residential',
'L3': 'residential',
'L8': 'residential',
'L9': 'residential',
'M1': 'large office',
'M2': 'large office',
'M3': 'large office',
'M4': 'large office',
'M9': 'large office',
'N1': 'residential',
'N2': 'residential',
'N3': 'residential',
'N4': 'residential',
'N9': 'residential',
'O1': 'office',
'O2': 'office',
'O3': 'office',
'O4': 'office',
'O5': 'office',
'O6': 'office',
'O7': 'office',
'O8': 'office',
'O9': 'office',
'P1': 'large office',
'P2': 'hotel',
'P3': 'office',
'P4': 'office',
'P5': 'office',
'P6': 'office',
'P7': 'large office',
'P8': 'large office',
'P9': 'office',
'Q0': 'office',
'Q1': 'office',
'Q2': 'office',
'Q3': 'office',
'Q4': 'office',
'Q5': 'office',
'Q6': 'office',
'Q7': 'office',
'Q8': 'office',
'Q9': 'office',
'R0': 'residential',
'R1': 'residential',
'R2': 'residential',
'R3': 'residential',
'R4': 'residential',
'R5': 'residential',
'R6': 'residential',
'R7': 'residential',
'R8': 'residential',
'R9': 'residential',
'RA': 'residential',
'RB': 'residential',
'RC': 'residential',
'RD': 'residential',
'RG': 'residential',
'RH': 'residential',
'RI': 'residential',
'RK': 'residential',
'RM': 'residential',
'RR': 'residential',
'RS': 'residential',
'RW': 'residential',
'RX': 'residential',
'RZ': 'residential',
'S0': 'residential',
'S1': 'residential',
'S2': 'residential',
'S3': 'residential',
'S4': 'residential',
'S5': 'residential',
'S9': 'residential',
'T1': 'na',
'T2': 'na',
'T9': 'na',
'U0': 'warehouse',
'U1': 'warehouse',
'U2': 'warehouse',
'U3': 'warehouse',
'U4': 'warehouse',
'U5': 'warehouse',
'U6': 'warehouse',
'U7': 'warehouse',
'U8': 'warehouse',
'U9': 'warehouse',
'V0': 'na',
'V1': 'na',
'V2': 'na',
'V3': 'na',
'V4': 'na',
'V5': 'na',
'V6': 'na',
'V7': 'na',
'V8': 'na',
'V9': 'na',
'W1': 'primary school',
'W2': 'primary school',
'W3': 'secondary school',
'W4': 'secondary school',
'W5': 'secondary school',
'W6': 'secondary school',
'W7': 'secondary school',
'W8': 'primary school',
'W9': 'secondary school',
'Y1': 'large office',
'Y2': 'large office',
'Y3': 'large office',
'Y4': 'large office',
'Y5': 'large office',
'Y6': 'large office',
'Y7': 'large office',
'Y8': 'large office',
'Y9': 'large office',
'Z0': 'na',
'Z1': 'large office',
'Z2': 'na',
'Z3': 'na',
'Z4': 'na',
'Z5': 'na',
'Z6': 'na',
'Z7': 'na',
'Z8': 'na',
'Z9': 'na'
}
@staticmethod
def function(pluto):
return PlutoToFunction.building_function[pluto]

View File

@ -1,57 +0,0 @@
class UsToLibraryTypes(object):
standards = {
'ASHRAE Std189': 1,
'ASHRAE 90.1-2004': 2
}
reference_city_climate_zone = {
'Miami': 'ASHRAE_2004:1A',
'Houston': 'ASHRAE_2004:2A',
'Phoenix': 'ASHRAE_2004:2B',
'Atlanta': 'ASHRAE_2004:3A',
'Los Angeles': 'ASHRAE_2004:3B',
'Las Vegas': 'ASHRAE_2004:3B',
'San Francisco': 'ASHRAE_2004:3C',
'Baltimore': 'ASHRAE_2004:4A',
'Albuquerque': 'ASHRAE_2004:4B',
'Seattle': 'ASHRAE_2004:4C',
'Chicago': 'ASHRAE_2004:5A',
'Boulder': 'ASHRAE_2004:5B',
'Minneapolis': 'ASHRAE_2004:6A',
'Helena': 'ASHRAE_2004:6B',
'Duluth': 'ASHRAE_2004:7A',
'Fairbanks': 'ASHRAE_2004:8A'
}
window_types = ['window', 'door', 'skylight']
construction_types = {
'Wall': 'exterior wall',
'interior wall': 'interior wall',
'ground wall': 'ground wall',
'Ground': 'exterior slab',
'attic floor': 'attic floor',
'interior slab': 'interior slab',
'Roof': 'roof'
}
@staticmethod
def yoc_to_standard(year_of_construction):
if int(year_of_construction) < 2009:
standard = 'ASHRAE 90.1_2004'
else:
standard = 'ASHRAE 189.1_2009'
return standard
@staticmethod
def city_to_reference_city(city):
# ToDo: Dummy function that need to be implemented
reference_city = 'Baltimore'
if city is not None:
reference_city = 'Baltimore'
return reference_city
@staticmethod
def city_to_climate_zone(city):
reference_city = UsToLibraryTypes.city_to_reference_city(city)
return UsToLibraryTypes.reference_city_climate_zone[reference_city]

View File

@ -1,109 +0,0 @@
import xmltodict
from city_model_structure.layer import Layer
from city_model_structure.material import Material
from pathlib import Path
from physics.physics_feeders.helpers.us_to_library_types import UsToLibraryTypes
class UsBasePhysicsParameters:
def __init__(self, climate_zone, city_objects, function_to_type):
self._climate_zone = climate_zone
self._city_objects = city_objects
# load US Library
path = str(Path.cwd() / 'data/physics/us_constructions.xml')
with open(path) as xml:
self._library = xmltodict.parse(xml.read(), force_list='layer')
# load US Archetypes
path = str(Path.cwd() / 'data/physics/us_archetypes.xml')
with open(path) as xml:
self._archetypes = xmltodict.parse(xml.read(), force_list='layer')
for city_object in self._city_objects:
building_type = function_to_type(city_object.function)
if building_type is None:
return
archetype = self.search_archetype(building_type,
UsToLibraryTypes.yoc_to_standard(city_object.year_of_construction),
self._climate_zone)
# ToDo:remove this in the future
# ToDo: Raise WrongArchetype if not all the surface types are defined for the given city_object
if archetype is None:
print(building_type, UsToLibraryTypes.yoc_to_standard(city_object.year_of_construction),
self._climate_zone)
raise Exception('Archetype not found for building')
city_object.average_storey_height = archetype['average_storey_height']['#text']
city_object.storeys_above_ground = archetype['number_of_storeys']['#text']
for thermal_zone in city_object.thermal_zones:
thermal_zone.effective_thermal_capacity = archetype['thermal_capacity']['#text']
thermal_zone.additional_thermal_bridge_u_value = archetype['extra_loses_due_to_thermal_bridges']['#text']
thermal_zone.indirectly_heated_area_ratio = archetype['indirect_heated_ratio']['#text']
thermal_zone.infiltration_rate_system_off = archetype['infiltration_rate_for_ventilation_system_off']['#text']
thermal_zone.infiltration_rate_system_on = archetype['infiltration_rate_for_ventilation_system_on']['#text']
for thermal_boundary in thermal_zone.bounded:
construction_type = UsToLibraryTypes.construction_types[thermal_boundary.type]
construction = UsBasePhysicsParameters.search_construction_in_archetype(archetype, construction_type)
construction_id = construction['@id']
c_lib = self.search_construction_type('construction', construction_id)
if 'outside_solar_absorptance' in c_lib:
thermal_boundary.outside_solar_absorptance = c_lib['outside_solar_absorptance']['#text']
thermal_boundary.outside_thermal_absorptance = c_lib['outside_thermal_absorptance']['#text']
thermal_boundary.outside_visible_absorptance = c_lib['outside_visible_absorptance']['#text']
thermal_boundary.window_ratio = construction['window_ratio']['#text']
thermal_boundary.layers = []
for current_layer in c_lib['layers']['layer']:
layer = Layer()
if 'thickness' in current_layer:
layer.thickness_m = current_layer['thickness']['#text']
material_lib = self.search_construction_type('material', current_layer['material'])
material = Material()
if 'conductivity' in material_lib:
material.conductivity_wm_k = material_lib['conductivity']['#text']
material.specific_heat_jkg_k = material_lib['specific_heat']['#text']
material.density_kg_m3 = material_lib['density']['#text']
material.solar_absorptance = material_lib['solar_absorptance']['#text']
material.thermal_absorptance = material_lib['thermal_absorptance']['#text']
material.visible_absorptance = material_lib['visible_absorptance']['#text']
material.no_mass = 'no_mass' in material_lib
if 'thermal_resistance' in material_lib:
material.thermal_resistance_m2k_w = material_lib['thermal_resistance']['#text']
else:
material.thermal_resistance_m2k_w = None
layer.material = material
thermal_boundary.layers.append(layer)
for opening in thermal_boundary.thermal_openings:
if construction['window'] is None:
continue
w_lib = self.search_construction_type('window', construction['window'])
opening.area = '0.0'
opening.conductivity_w_mk = w_lib['conductivity']['#text']
opening.frame_ratio = w_lib['frame_ratio']['#text']
opening.g_value = w_lib['solar_transmittance_at_normal_incidence']['#text']
opening.thickness_m = w_lib['thickness']['#text']
opening.inside_reflectance = 1.0-float(w_lib['back_side_solar_transmittance_at_normal_incidence']['#text'])
opening.outside_reflectance = \
1.0-float(w_lib['front_side_solar_transmittance_at_normal_incidence']['#text'])
def search_archetype(self, building_type, standard, climate_zone):
for archetype in self._archetypes['archetypes']['archetype']:
a_yc = str(archetype['@reference_standard'])
a_bt = str(archetype['@building_type'])
a_cz = str(archetype['@climate_zone'])
if (a_yc == str(standard)) and (a_bt == str(building_type)) and (a_cz == str(climate_zone)):
return archetype
return None
def search_construction_type(self, construction_type, construction_id):
for c_lib in self._library['library'][construction_type + 's'][construction_type]:
if construction_id == c_lib['@id']:
return c_lib
raise Exception('Archetype definition contains elements that does not exist in the library')
@staticmethod
def search_construction_in_archetype(archetype, construction_type):
for construction in archetype['constructions']['construction']:
if construction['@type'] == construction_type:
return construction
raise Exception('Construction type not found')

View File

@ -1,10 +0,0 @@
from physics.physics_feeders.us_base_physics_parameters import UsBasePhysicsParameters
from physics.physics_feeders.helpers.pluto_to_function import PlutoToFunction as Pf
class UsNewYorkCityPhysicsParameters(UsBasePhysicsParameters):
def __init__(self, city):
self._city = city
climate_zone = 'ASHRAE_2004:4A'
super().__init__(climate_zone, self._city.city_objects, Pf.function)

View File

@ -1,11 +0,0 @@
from physics.physics_feeders.us_base_physics_parameters import UsBasePhysicsParameters
from physics.physics_feeders.helpers.pluto_to_function import PlutoToFunction as Pf
from physics.physics_feeders.helpers.us_to_library_types import UsToLibraryTypes
class UsPhysicsParameters(UsBasePhysicsParameters):
def __init__(self, city):
self._city = city
self._climate_zone = UsToLibraryTypes.city_to_climate_zone(city.city_name)
super().__init__(self._climate_zone, self._city.city_objects, Pf.building_type_to_nrel)

View File

@ -1,24 +0,0 @@
from usage.usage_feeders.de_usage_parameters import DeUsageParameters
from usage.usage_feeders.us_new_york_city_usage_parameters import UsNewYorkCityUsageParameters
class UsageFactory:
def __init__(self, handler, city):
self._handler = handler.lower().replace(' ', '_')
self._city = city
self.factory()
def us_new_york_city(self):
UsNewYorkCityUsageParameters(self._city)
def ca(self):
raise Exception('Not implemented')
def de(self):
DeUsageParameters(self._city)
def es(self):
raise Exception('Not implemented')
def factory(self):
getattr(self, self._handler, lambda: None)()

View File

@ -1,15 +0,0 @@
import xmltodict
from pathlib import Path
from usage.usage_feeders.helpers.us_function_to_usage import UsFunctionToUsage
class DeUsageParameters:
def __init__(self, city_objects):
self._city_objects = city_objects
# load US Library
path = str(Path.cwd() / 'data/usage/de_library.xml')
with open(path) as xml:
self._library = xmltodict.parse(xml.read())
for city_object in city_objects:
UsFunctionToUsage.function_to_usage(city_object.function)

View File

@ -1,251 +0,0 @@
class UsFunctionToUsage:
building_usage = {
'full service restaurant': 'restaurant',
'highrise apartment': 'residential',
'hospital': 'health care',
'large hotel': 'hotel',
'large office': 'office and administration',
'medium office': 'office and administration',
'midrise apartment': 'residential',
'outpatient healthcare': 'health care',
'primary school': 'education',
'quick service restaurant': 'restaurant',
'secondary school': 'education',
'small hotel': 'hotel',
'small office': 'office and administration',
'stand alone retail': 'retail',
'strip mall': 'hall',
'supermarket': 'retail',
'warehouse': 'industry'
}
building_function = {
'A0': 'single family house',
'A1': 'single family house',
'A2': 'single family house',
'A3': 'single family house',
'A4': 'single family house',
'A5': 'single family house',
'A6': 'single family house',
'A7': 'single family house',
'A8': 'single family house',
'A9': 'single family house',
'B1': 'multifamily house',
'B2': 'multifamily house',
'B3': 'multifamily house',
'B9': 'multifamily house',
'C0': 'residential',
'C1': 'residential',
'C2': 'residential',
'C3': 'residential',
'C4': 'residential',
'C5': 'residential',
'C6': 'residential',
'C7': 'residential',
'C8': 'residential',
'C9': 'residential',
'D0': 'residential',
'D1': 'residential',
'D2': 'residential',
'D3': 'residential',
'D4': 'residential',
'D5': 'residential',
'D6': 'residential',
'D7': 'residential',
'D8': 'residential',
'D9': 'residential',
'E1': 'warehouse',
'E3': 'warehouse',
'E4': 'warehouse',
'E5': 'warehouse',
'E7': 'warehouse',
'E9': 'warehouse',
'F1': 'warehouse',
'F2': 'warehouse',
'F4': 'warehouse',
'F5': 'warehouse',
'F8': 'warehouse',
'F9': 'warehouse',
'G0': 'office',
'G1': 'office',
'G2': 'office',
'G3': 'office',
'G4': 'office',
'G5': 'office',
'G6': 'office',
'G7': 'office',
'G8': 'office',
'G9': 'office',
'H1': 'hotel',
'H2': 'hotel',
'H3': 'hotel',
'H4': 'hotel',
'H5': 'hotel',
'H6': 'hotel',
'H7': 'hotel',
'H8': 'hotel',
'H9': 'hotel',
'HB': 'hotel',
'HH': 'hotel',
'HR': 'hotel',
'HS': 'hotel',
'I1': 'hospital',
'I2': 'outpatient',
'I3': 'outpatient',
'I4': 'residential',
'I5': 'outpatient',
'I6': 'outpatient',
'I7': 'outpatient',
'I9': 'outpatient',
'J1': 'large office',
'J2': 'large office',
'J3': 'large office',
'J4': 'large office',
'J5': 'large office',
'J6': 'large office',
'J7': 'large office',
'J8': 'large office',
'J9': 'large office',
'K1': 'strip mall',
'K2': 'strip mall',
'K3': 'strip mall',
'K4': 'residential',
'K5': 'restaurant',
'K6': 'commercial',
'K7': 'commercial',
'K8': 'commercial',
'K9': 'commercial',
'L1': 'residential',
'L2': 'residential',
'L3': 'residential',
'L8': 'residential',
'L9': 'residential',
'M1': 'large office',
'M2': 'large office',
'M3': 'large office',
'M4': 'large office',
'M9': 'large office',
'N1': 'residential',
'N2': 'residential',
'N3': 'residential',
'N4': 'residential',
'N9': 'residential',
'O1': 'office',
'O2': 'office',
'O3': 'office',
'O4': 'office',
'O5': 'office',
'O6': 'office',
'O7': 'office',
'O8': 'office',
'O9': 'office',
'P1': 'large office',
'P2': 'hotel',
'P3': 'office',
'P4': 'office',
'P5': 'office',
'P6': 'office',
'P7': 'large office',
'P8': 'large office',
'P9': 'office',
'Q0': 'office',
'Q1': 'office',
'Q2': 'office',
'Q3': 'office',
'Q4': 'office',
'Q5': 'office',
'Q6': 'office',
'Q7': 'office',
'Q8': 'office',
'Q9': 'office',
'R0': 'residential',
'R1': 'residential',
'R2': 'residential',
'R3': 'residential',
'R4': 'residential',
'R5': 'residential',
'R6': 'residential',
'R7': 'residential',
'R8': 'residential',
'R9': 'residential',
'RA': 'residential',
'RB': 'residential',
'RC': 'residential',
'RD': 'residential',
'RG': 'residential',
'RH': 'residential',
'RI': 'residential',
'RK': 'residential',
'RM': 'residential',
'RR': 'residential',
'RS': 'residential',
'RW': 'residential',
'RX': 'residential',
'RZ': 'residential',
'S0': 'residential',
'S1': 'residential',
'S2': 'residential',
'S3': 'residential',
'S4': 'residential',
'S5': 'residential',
'S9': 'residential',
'T1': 'na',
'T2': 'na',
'T9': 'na',
'U0': 'warehouse',
'U1': 'warehouse',
'U2': 'warehouse',
'U3': 'warehouse',
'U4': 'warehouse',
'U5': 'warehouse',
'U6': 'warehouse',
'U7': 'warehouse',
'U8': 'warehouse',
'U9': 'warehouse',
'V0': 'na',
'V1': 'na',
'V2': 'na',
'V3': 'na',
'V4': 'na',
'V5': 'na',
'V6': 'na',
'V7': 'na',
'V8': 'na',
'V9': 'na',
'W1': 'primary school',
'W2': 'primary school',
'W3': 'secondary school',
'W4': 'secondary school',
'W5': 'secondary school',
'W6': 'secondary school',
'W7': 'secondary school',
'W8': 'primary school',
'W9': 'secondary school',
'Y1': 'large office',
'Y2': 'large office',
'Y3': 'large office',
'Y4': 'large office',
'Y5': 'large office',
'Y6': 'large office',
'Y7': 'large office',
'Y8': 'large office',
'Y9': 'large office',
'Z0': 'na',
'Z1': 'large office',
'Z2': 'na',
'Z3': 'na',
'Z4': 'na',
'Z5': 'na',
'Z6': 'na',
'Z7': 'na',
'Z8': 'na',
'Z9': 'na'
}
@staticmethod
def function_to_usage(building_function):
return UsFunctionToUsage.building_usage[building_function]
@staticmethod
def pluto_to_function(pluto):
return UsFunctionToUsage.building_function[pluto]

View File

@ -1,78 +0,0 @@
import xmltodict
from pathlib import Path
from city_model_structure.usage_zone import UsageZone
from city_model_structure.internal_gains import InternalGains
class UsBaseUsageParameters:
def __init__(self, city, function_to_usage):
self._city = city
# ToDo: this is using the german library as a temporary approach, need to use/define a library for US
path = str(Path.cwd() / 'data/usage/de_library.xml')
with open(path) as xml:
self._library = xmltodict.parse(xml.read(), force_list='zoneUsageVariant')
for city_object in self._city.city_objects:
#ToDo: Right now is just one usage zone but will be multiple in the future
usage_zone = UsageZone()
usage_zone.usage = function_to_usage(city_object.function)
for zone_usage_type in self._library['buildingUsageLibrary']['zoneUsageType']:
if zone_usage_type['id'] != usage_zone.usage:
if 'zoneUsageVariant' in zone_usage_type:
for usage_zone_variant in zone_usage_type['zoneUsageVariant']:
if usage_zone_variant['id'] == usage_zone.usage:
# pre-initialize the usage zone with the main type
usage_zone = UsBaseUsageParameters._parse_zone_usage_type(zone_usage_type, usage_zone)
usage_zone = UsBaseUsageParameters._parse_zone_usage_variant(usage_zone_variant, usage_zone)
city_object.usage_zone = [usage_zone]
break
continue
else:
city_object.usage_zone = [UsBaseUsageParameters._parse_zone_usage_type(zone_usage_type, usage_zone)]
break
if city_object.usage_zone is None:
print(city_object.function)
raise Exception('Usage not found for building function')
@staticmethod
def _parse_zone_usage_type(zone_usage_type, usage_zone):
usage_zone.hours_day = zone_usage_type['occupancy']['usageHoursPerDay']
usage_zone.days_year = zone_usage_type['occupancy']['usageDaysPerYear']
usage_zone.cooling_setpoint = zone_usage_type['endUses']['space_cooling']['coolingSetPointTemperature']
usage_zone.heating_setpoint = zone_usage_type['endUses']['space_heating']['heatingSetPointTemperature']
usage_zone.heating_setback = zone_usage_type['endUses']['space_heating']['heatingSetBackTemperature']
if 'ventilation' in zone_usage_type['endUses'] and zone_usage_type['endUses']['ventilation'] is not None:
usage_zone.mechanical_air_change = zone_usage_type['endUses']['ventilation']['mechanicalAirChangeRate']
int_gains = InternalGains()
int_gains.latent_fraction = zone_usage_type['occupancy']['internGains']['latentFraction']
int_gains.convective_fraction = zone_usage_type['occupancy']['internGains']['convectiveFraction']
int_gains.average_internal_gain_w_m2 = zone_usage_type['occupancy']['internGains']['averageInternGainPerSqm']
int_gains.radiative_fraction = zone_usage_type['occupancy']['internGains']['radiantFraction']
usage_zone.internal_gains = [int_gains]
return usage_zone
@staticmethod
def _parse_zone_usage_variant(usage_zone_variant, usage_zone):
# for the variants all is optional because it mimics the inheritance concept from OOP
if 'usageHoursPerDay' in usage_zone_variant['occupancy']:
usage_zone.hours_day = usage_zone_variant['occupancy']['usageHoursPerDay']
if 'usageDaysPerYear' in usage_zone_variant['occupancy']:
usage_zone.days_year = usage_zone_variant['occupancy']['usageDaysPerYear']
if 'coolingSetPointTemperature' in usage_zone_variant['endUses']['space_cooling']:
usage_zone.cooling_setpoint = usage_zone_variant['endUses']['space_cooling']['coolingSetPointTemperature']
if 'heatingSetPointTemperature' in usage_zone_variant['endUses']['space_heating']:
usage_zone.heating_setpoint = usage_zone_variant['endUses']['space_heating']['heatingSetPointTemperature']
if 'heatingSetBackTemperature' in usage_zone_variant['endUses']['space_heating']:
usage_zone.heating_setback = usage_zone_variant['endUses']['space_heating']['heatingSetBackTemperature']
if 'ventilation' in usage_zone_variant['endUses'] and usage_zone_variant['endUses']['ventilation'] is not None:
usage_zone.mechanical_air_change = usage_zone_variant['endUses']['ventilation']['mechanicalAirChangeRate']
if 'latentFraction' in usage_zone_variant['occupancy']['internGains']:
usage_zone.int_gains[0].latent_fraction = usage_zone_variant['occupancy']['internGains']['latentFraction']
if 'convectiveFraction' in usage_zone_variant['occupancy']['internGains']:
usage_zone.int_gains[0].convective_fraction = usage_zone_variant['occupancy']['internGains']['convectiveFraction']
if 'averageInternGainPerSqm' in usage_zone_variant['occupancy']['internGains']:
usage_zone.int_gains[0].average_internal_gain_w_m2 = \
usage_zone_variant['occupancy']['internGains']['averageInternGainPerSqm']
if 'radiantFraction' in usage_zone_variant['occupancy']['internGains']:
usage_zone.int_gains[0].radiative_fraction = usage_zone_variant['occupancy']['internGains']['radiantFraction']
return usage_zone

View File

@ -1,7 +0,0 @@
from usage.usage_feeders.us_base_usage_parameters import UsBaseUsageParameters
from usage.usage_feeders.helpers.us_function_to_usage import UsFunctionToUsage
class UsNewYorkCityUsageParameters(UsBaseUsageParameters):
def __init__(self, city):
super().__init__(city, UsFunctionToUsage.function)

View File

@ -1,7 +0,0 @@
from usage.usage_feeders.us_base_usage_parameters import UsBaseUsageParameters
from usage.usage_feeders.helpers.us_function_to_usage import UsFunctionToUsage
class UsUsageParameters(UsBaseUsageParameters):
def __init__(self, city):
super().__init__(city, UsFunctionToUsage.function_to_usage)

View File

@ -1,10 +0,0 @@
class UsageLibrary:
def __init__(self):
self.standard = 1
self.internal_gains = [4.2]
self.heating_setpoint = [20.0]
self.heating_setback = [16.0]
self.cooling_setpoint = [25.0]
self.hours_day = [17]
self.days_year = [365]
self.min_air_change = [0.34]