forked from s_ranjbar/city_retrofit
48 lines
1.4 KiB
Python
48 lines
1.4 KiB
Python
|
"""
|
||
|
Monthly values
|
||
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||
|
Copyright © 2020 Project Author Pilar Monsalvete pilar_monsalvete@yahoo.es
|
||
|
"""
|
||
|
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import calendar as cal
|
||
|
|
||
|
|
||
|
class MonthlyValues:
|
||
|
def __init__(self):
|
||
|
self._month_hour = None
|
||
|
|
||
|
def get_mean_values(self, values):
|
||
|
out = None
|
||
|
if values is not None:
|
||
|
if 'month' not in values.columns:
|
||
|
values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1)
|
||
|
out = values.groupby('month', as_index=False).mean()
|
||
|
del out['month']
|
||
|
return out
|
||
|
|
||
|
def get_total_month(self, values):
|
||
|
out = None
|
||
|
if values is not None:
|
||
|
if 'month' not in values.columns:
|
||
|
values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1)
|
||
|
out = pd.DataFrame(values).groupby('month', as_index=False).sum()
|
||
|
del out['month']
|
||
|
return out
|
||
|
|
||
|
@property
|
||
|
def month_hour(self):
|
||
|
"""
|
||
|
returns a DataFrame that has x values of the month number (January = 1, February = 2...),
|
||
|
being x the number of hours of the corresponding month
|
||
|
:return: DataFrame(int)
|
||
|
"""
|
||
|
array = []
|
||
|
for i in range(0, 12):
|
||
|
days_of_month = cal.monthrange(2015, i+1)[1]
|
||
|
total_hours = days_of_month * 24
|
||
|
array = np.concatenate((array, np.full(total_hours, i + 1)))
|
||
|
self._month_hour = pd.DataFrame(array, columns=['month'])
|
||
|
return self._month_hour
|