forked from s_ranjbar/city_retrofit
264 lines
8.4 KiB
Python
264 lines
8.4 KiB
Python
|
"""Affine transforms, both in general and specific, named transforms."""
|
||
|
|
||
|
from math import sin, cos, tan, pi
|
||
|
|
||
|
__all__ = ['affine_transform', 'rotate', 'scale', 'skew', 'translate']
|
||
|
|
||
|
|
||
|
def affine_transform(geom, matrix):
|
||
|
r"""Returns a transformed geometry using an affine transformation matrix.
|
||
|
|
||
|
The coefficient matrix is provided as a list or tuple with 6 or 12 items
|
||
|
for 2D or 3D transformations, respectively.
|
||
|
|
||
|
For 2D affine transformations, the 6 parameter matrix is::
|
||
|
|
||
|
[a, b, d, e, xoff, yoff]
|
||
|
|
||
|
which represents the augmented matrix::
|
||
|
|
||
|
[x'] / a b xoff \ [x]
|
||
|
[y'] = | d e yoff | [y]
|
||
|
[1 ] \ 0 0 1 / [1]
|
||
|
|
||
|
or the equations for the transformed coordinates::
|
||
|
|
||
|
x' = a * x + b * y + xoff
|
||
|
y' = d * x + e * y + yoff
|
||
|
|
||
|
For 3D affine transformations, the 12 parameter matrix is::
|
||
|
|
||
|
[a, b, c, d, e, f, g, h, i, xoff, yoff, zoff]
|
||
|
|
||
|
which represents the augmented matrix::
|
||
|
|
||
|
[x'] / a b c xoff \ [x]
|
||
|
[y'] = | d e f yoff | [y]
|
||
|
[z'] | g h i zoff | [z]
|
||
|
[1 ] \ 0 0 0 1 / [1]
|
||
|
|
||
|
or the equations for the transformed coordinates::
|
||
|
|
||
|
x' = a * x + b * y + c * z + xoff
|
||
|
y' = d * x + e * y + f * z + yoff
|
||
|
z' = g * x + h * y + i * z + zoff
|
||
|
"""
|
||
|
if geom.is_empty:
|
||
|
return geom
|
||
|
if len(matrix) == 6:
|
||
|
ndim = 2
|
||
|
a, b, d, e, xoff, yoff = matrix
|
||
|
if geom.has_z:
|
||
|
ndim = 3
|
||
|
i = 1.0
|
||
|
c = f = g = h = zoff = 0.0
|
||
|
matrix = a, b, c, d, e, f, g, h, i, xoff, yoff, zoff
|
||
|
elif len(matrix) == 12:
|
||
|
ndim = 3
|
||
|
a, b, c, d, e, f, g, h, i, xoff, yoff, zoff = matrix
|
||
|
if not geom.has_z:
|
||
|
ndim = 2
|
||
|
matrix = a, b, d, e, xoff, yoff
|
||
|
else:
|
||
|
raise ValueError("'matrix' expects either 6 or 12 coefficients")
|
||
|
|
||
|
def affine_pts(pts):
|
||
|
"""Internal function to yield affine transform of coordinate tuples"""
|
||
|
if ndim == 2:
|
||
|
for x, y in pts:
|
||
|
xp = a * x + b * y + xoff
|
||
|
yp = d * x + e * y + yoff
|
||
|
yield (xp, yp)
|
||
|
elif ndim == 3:
|
||
|
for x, y, z in pts:
|
||
|
xp = a * x + b * y + c * z + xoff
|
||
|
yp = d * x + e * y + f * z + yoff
|
||
|
zp = g * x + h * y + i * z + zoff
|
||
|
yield (xp, yp, zp)
|
||
|
|
||
|
# Process coordinates from each supported geometry type
|
||
|
if geom.type in ('Point', 'LineString', 'LinearRing'):
|
||
|
return type(geom)(list(affine_pts(geom.coords)))
|
||
|
elif geom.type == 'Polygon':
|
||
|
ring = geom.exterior
|
||
|
shell = type(ring)(list(affine_pts(ring.coords)))
|
||
|
holes = list(geom.interiors)
|
||
|
for pos, ring in enumerate(holes):
|
||
|
holes[pos] = type(ring)(list(affine_pts(ring.coords)))
|
||
|
return type(geom)(shell, holes)
|
||
|
elif geom.type.startswith('Multi') or geom.type == 'GeometryCollection':
|
||
|
# Recursive call
|
||
|
# TODO: fix GeometryCollection constructor
|
||
|
return type(geom)([affine_transform(part, matrix)
|
||
|
for part in geom.geoms])
|
||
|
else:
|
||
|
raise ValueError('Type %r not recognized' % geom.type)
|
||
|
|
||
|
|
||
|
def interpret_origin(geom, origin, ndim):
|
||
|
"""Returns interpreted coordinate tuple for origin parameter.
|
||
|
|
||
|
This is a helper function for other transform functions.
|
||
|
|
||
|
The point of origin can be a keyword 'center' for the 2D bounding box
|
||
|
center, 'centroid' for the geometry's 2D centroid, a Point object or a
|
||
|
coordinate tuple (x0, y0, z0).
|
||
|
"""
|
||
|
# get coordinate tuple from 'origin' from keyword or Point type
|
||
|
if origin == 'center':
|
||
|
# bounding box center
|
||
|
minx, miny, maxx, maxy = geom.bounds
|
||
|
origin = ((maxx + minx)/2.0, (maxy + miny)/2.0)
|
||
|
elif origin == 'centroid':
|
||
|
origin = geom.centroid.coords[0]
|
||
|
elif isinstance(origin, str):
|
||
|
raise ValueError("'origin' keyword %r is not recognized" % origin)
|
||
|
elif hasattr(origin, 'type') and origin.type == 'Point':
|
||
|
origin = origin.coords[0]
|
||
|
|
||
|
# origin should now be tuple-like
|
||
|
if len(origin) not in (2, 3):
|
||
|
raise ValueError("Expected number of items in 'origin' to be "
|
||
|
"either 2 or 3")
|
||
|
if ndim == 2:
|
||
|
return origin[0:2]
|
||
|
else: # 3D coordinate
|
||
|
if len(origin) == 2:
|
||
|
return origin + (0.0,)
|
||
|
else:
|
||
|
return origin
|
||
|
|
||
|
|
||
|
def rotate(geom, angle, origin='center', use_radians=False):
|
||
|
r"""Returns a rotated geometry on a 2D plane.
|
||
|
|
||
|
The angle of rotation can be specified in either degrees (default) or
|
||
|
radians by setting ``use_radians=True``. Positive angles are
|
||
|
counter-clockwise and negative are clockwise rotations.
|
||
|
|
||
|
The point of origin can be a keyword 'center' for the bounding box
|
||
|
center (default), 'centroid' for the geometry's centroid, a Point object
|
||
|
or a coordinate tuple (x0, y0).
|
||
|
|
||
|
The affine transformation matrix for 2D rotation is:
|
||
|
|
||
|
/ cos(r) -sin(r) xoff \
|
||
|
| sin(r) cos(r) yoff |
|
||
|
\ 0 0 1 /
|
||
|
|
||
|
where the offsets are calculated from the origin Point(x0, y0):
|
||
|
|
||
|
xoff = x0 - x0 * cos(r) + y0 * sin(r)
|
||
|
yoff = y0 - x0 * sin(r) - y0 * cos(r)
|
||
|
"""
|
||
|
if geom.is_empty:
|
||
|
return geom
|
||
|
if not use_radians: # convert from degrees
|
||
|
angle = angle * pi/180.0
|
||
|
cosp = cos(angle)
|
||
|
sinp = sin(angle)
|
||
|
if abs(cosp) < 2.5e-16:
|
||
|
cosp = 0.0
|
||
|
if abs(sinp) < 2.5e-16:
|
||
|
sinp = 0.0
|
||
|
x0, y0 = interpret_origin(geom, origin, 2)
|
||
|
|
||
|
matrix = (cosp, -sinp, 0.0,
|
||
|
sinp, cosp, 0.0,
|
||
|
0.0, 0.0, 1.0,
|
||
|
x0 - x0 * cosp + y0 * sinp, y0 - x0 * sinp - y0 * cosp, 0.0)
|
||
|
return affine_transform(geom, matrix)
|
||
|
|
||
|
|
||
|
def scale(geom, xfact=1.0, yfact=1.0, zfact=1.0, origin='center'):
|
||
|
r"""Returns a scaled geometry, scaled by factors along each dimension.
|
||
|
|
||
|
The point of origin can be a keyword 'center' for the 2D bounding box
|
||
|
center (default), 'centroid' for the geometry's 2D centroid, a Point
|
||
|
object or a coordinate tuple (x0, y0, z0).
|
||
|
|
||
|
Negative scale factors will mirror or reflect coordinates.
|
||
|
|
||
|
The general 3D affine transformation matrix for scaling is:
|
||
|
|
||
|
/ xfact 0 0 xoff \
|
||
|
| 0 yfact 0 yoff |
|
||
|
| 0 0 zfact zoff |
|
||
|
\ 0 0 0 1 /
|
||
|
|
||
|
where the offsets are calculated from the origin Point(x0, y0, z0):
|
||
|
|
||
|
xoff = x0 - x0 * xfact
|
||
|
yoff = y0 - y0 * yfact
|
||
|
zoff = z0 - z0 * zfact
|
||
|
"""
|
||
|
if geom.is_empty:
|
||
|
return geom
|
||
|
x0, y0, z0 = interpret_origin(geom, origin, 3)
|
||
|
|
||
|
matrix = (xfact, 0.0, 0.0,
|
||
|
0.0, yfact, 0.0,
|
||
|
0.0, 0.0, zfact,
|
||
|
x0 - x0 * xfact, y0 - y0 * yfact, z0 - z0 * zfact)
|
||
|
return affine_transform(geom, matrix)
|
||
|
|
||
|
|
||
|
def skew(geom, xs=0.0, ys=0.0, origin='center', use_radians=False):
|
||
|
r"""Returns a skewed geometry, sheared by angles along x and y dimensions.
|
||
|
|
||
|
The shear angle can be specified in either degrees (default) or radians
|
||
|
by setting ``use_radians=True``.
|
||
|
|
||
|
The point of origin can be a keyword 'center' for the bounding box
|
||
|
center (default), 'centroid' for the geometry's centroid, a Point object
|
||
|
or a coordinate tuple (x0, y0).
|
||
|
|
||
|
The general 2D affine transformation matrix for skewing is:
|
||
|
|
||
|
/ 1 tan(xs) xoff \
|
||
|
| tan(ys) 1 yoff |
|
||
|
\ 0 0 1 /
|
||
|
|
||
|
where the offsets are calculated from the origin Point(x0, y0):
|
||
|
|
||
|
xoff = -y0 * tan(xs)
|
||
|
yoff = -x0 * tan(ys)
|
||
|
"""
|
||
|
if geom.is_empty:
|
||
|
return geom
|
||
|
if not use_radians: # convert from degrees
|
||
|
xs = xs * pi/180.0
|
||
|
ys = ys * pi/180.0
|
||
|
tanx = tan(xs)
|
||
|
tany = tan(ys)
|
||
|
if abs(tanx) < 2.5e-16:
|
||
|
tanx = 0.0
|
||
|
if abs(tany) < 2.5e-16:
|
||
|
tany = 0.0
|
||
|
x0, y0 = interpret_origin(geom, origin, 2)
|
||
|
|
||
|
matrix = (1.0, tanx, 0.0,
|
||
|
tany, 1.0, 0.0,
|
||
|
0.0, 0.0, 1.0,
|
||
|
-y0 * tanx, -x0 * tany, 0.0)
|
||
|
return affine_transform(geom, matrix)
|
||
|
|
||
|
|
||
|
def translate(geom, xoff=0.0, yoff=0.0, zoff=0.0):
|
||
|
r"""Returns a translated geometry shifted by offsets along each dimension.
|
||
|
|
||
|
The general 3D affine transformation matrix for translation is:
|
||
|
|
||
|
/ 1 0 0 xoff \
|
||
|
| 0 1 0 yoff |
|
||
|
| 0 0 1 zoff |
|
||
|
\ 0 0 0 1 /
|
||
|
"""
|
||
|
if geom.is_empty:
|
||
|
return geom
|
||
|
matrix = (1.0, 0.0, 0.0,
|
||
|
0.0, 1.0, 0.0,
|
||
|
0.0, 0.0, 1.0,
|
||
|
xoff, yoff, zoff)
|
||
|
return affine_transform(geom, matrix)
|