forked from s_ranjbar/city_retrofit
516 lines
17 KiB
Python
516 lines
17 KiB
Python
|
"""
|
||
|
proximity.py
|
||
|
---------------
|
||
|
|
||
|
Query mesh- point proximity.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
from . import util
|
||
|
|
||
|
from .grouping import group_min
|
||
|
from .constants import tol, log_time
|
||
|
from .triangles import closest_point as closest_point_corresponding
|
||
|
|
||
|
|
||
|
def nearby_faces(mesh, points):
|
||
|
"""
|
||
|
For each point find nearby faces relatively quickly.
|
||
|
|
||
|
The closest point on the mesh to the queried point is guaranteed to be
|
||
|
on one of the faces listed.
|
||
|
|
||
|
Does this by finding the nearest vertex on the mesh to each point, and
|
||
|
then returns all the faces that intersect the axis aligned bounding box
|
||
|
centered at the queried point and extending to the nearest vertex.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mesh : Trimesh object
|
||
|
points : (n,3) float , points in space
|
||
|
|
||
|
Returns
|
||
|
-----------
|
||
|
candidates : (points,) int, sequence of indexes for mesh.faces
|
||
|
"""
|
||
|
points = np.asanyarray(points, dtype=np.float64)
|
||
|
if not util.is_shape(points, (-1, 3)):
|
||
|
raise ValueError('points must be (n,3)!')
|
||
|
|
||
|
# an r-tree containing the axis aligned bounding box for every triangle
|
||
|
rtree = mesh.triangles_tree
|
||
|
# a kd-tree containing every vertex of the mesh
|
||
|
kdtree = mesh.kdtree
|
||
|
|
||
|
# query the distance to the nearest vertex to get AABB of a sphere
|
||
|
distance_vertex = kdtree.query(points)[0].reshape((-1, 1))
|
||
|
distance_vertex += tol.merge
|
||
|
|
||
|
# axis aligned bounds
|
||
|
bounds = np.column_stack((points - distance_vertex,
|
||
|
points + distance_vertex))
|
||
|
|
||
|
# faces that intersect axis aligned bounding box
|
||
|
candidates = [list(rtree.intersection(b)) for b in bounds]
|
||
|
|
||
|
return candidates
|
||
|
|
||
|
|
||
|
def closest_point_naive(mesh, points):
|
||
|
"""
|
||
|
Given a mesh and a list of points find the closest point
|
||
|
on any triangle.
|
||
|
|
||
|
Does this by constructing a very large intermediate array and
|
||
|
comparing every point to every triangle.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mesh : Trimesh
|
||
|
Takes mesh to have same interfaces as `closest_point`
|
||
|
points : (m, 3) float
|
||
|
Points in space
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
closest : (m, 3) float
|
||
|
Closest point on triangles for each point
|
||
|
distance : (m,) float
|
||
|
Distances between point and triangle
|
||
|
triangle_id : (m,) int
|
||
|
Index of triangle containing closest point
|
||
|
"""
|
||
|
# get triangles from mesh
|
||
|
triangles = mesh.triangles.view(np.ndarray)
|
||
|
# establish that input points are sane
|
||
|
points = np.asanyarray(points, dtype=np.float64)
|
||
|
if not util.is_shape(triangles, (-1, 3, 3)):
|
||
|
raise ValueError('triangles shape incorrect')
|
||
|
if not util.is_shape(points, (-1, 3)):
|
||
|
raise ValueError('points must be (n,3)')
|
||
|
|
||
|
# create a giant tiled array of each point tiled len(triangles) times
|
||
|
points_tiled = np.tile(points, (1, len(triangles)))
|
||
|
on_triangle = np.array([closest_point_corresponding(
|
||
|
triangles, i.reshape((-1, 3))) for i in points_tiled])
|
||
|
|
||
|
# distance squared
|
||
|
distance_2 = [((i - q)**2).sum(axis=1)
|
||
|
for i, q in zip(on_triangle, points)]
|
||
|
|
||
|
triangle_id = np.array([i.argmin() for i in distance_2])
|
||
|
|
||
|
# closest cartesian point
|
||
|
closest = np.array([g[i] for i, g in zip(triangle_id, on_triangle)])
|
||
|
distance = np.array([g[i] for i, g in zip(triangle_id, distance_2)]) ** .5
|
||
|
|
||
|
return closest, distance, triangle_id
|
||
|
|
||
|
|
||
|
def closest_point(mesh, points):
|
||
|
"""
|
||
|
Given a mesh and a list of points find the closest point
|
||
|
on any triangle.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mesh : trimesh.Trimesh
|
||
|
Mesh to query
|
||
|
points : (m, 3) float
|
||
|
Points in space
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
closest : (m, 3) float
|
||
|
Closest point on triangles for each point
|
||
|
distance : (m,) float
|
||
|
Distance
|
||
|
triangle_id : (m,) int
|
||
|
Index of triangle containing closest point
|
||
|
"""
|
||
|
points = np.asanyarray(points, dtype=np.float64)
|
||
|
if not util.is_shape(points, (-1, 3)):
|
||
|
raise ValueError('points must be (n,3)!')
|
||
|
|
||
|
# do a tree- based query for faces near each point
|
||
|
candidates = nearby_faces(mesh, points)
|
||
|
# view triangles as an ndarray so we don't have to recompute
|
||
|
# the MD5 during all of the subsequent advanced indexing
|
||
|
triangles = mesh.triangles.view(np.ndarray)
|
||
|
|
||
|
# create the corresponding list of triangles
|
||
|
# and query points to send to the closest_point function
|
||
|
all_candidates = np.concatenate(candidates)
|
||
|
num_candidates = list(map(len, candidates))
|
||
|
tile_idxs = np.repeat(np.arange(len(points)), num_candidates)
|
||
|
query_point = points[tile_idxs, :]
|
||
|
query_tri = triangles[all_candidates]
|
||
|
|
||
|
# do the computation for closest point
|
||
|
query_close = closest_point_corresponding(query_tri, query_point)
|
||
|
query_group = np.cumsum(num_candidates)[:-1]
|
||
|
|
||
|
# vectors and distances for
|
||
|
# closest point to query point
|
||
|
query_vector = query_point - query_close
|
||
|
query_distance = util.diagonal_dot(query_vector, query_vector)
|
||
|
|
||
|
# get best two candidate indices by arg-sorting the per-query_distances
|
||
|
qds = np.array_split(query_distance, query_group)
|
||
|
idxs = np.int32([qd.argsort()[:2] if len(qd) > 1 else [0, 0] for qd in qds])
|
||
|
idxs[1:] += query_group.reshape(-1, 1)
|
||
|
|
||
|
# distances and traingle ids for best two candidates
|
||
|
two_dists = query_distance[idxs]
|
||
|
two_candidates = all_candidates[idxs]
|
||
|
|
||
|
# the first candidate is the best result for unambiguous cases
|
||
|
result_close = query_close[idxs[:, 0]]
|
||
|
result_tid = two_candidates[:, 0]
|
||
|
result_distance = two_dists[:, 0]
|
||
|
|
||
|
# however: same closest point on two different faces
|
||
|
# find the best one and correct triangle ids if necessary
|
||
|
check_distance = two_dists.ptp(axis=1) < tol.merge
|
||
|
check_magnitude = np.all(np.abs(two_dists) > tol.merge, axis=1)
|
||
|
|
||
|
# mask results where corrections may be apply
|
||
|
c_mask = np.bitwise_and(check_distance, check_magnitude)
|
||
|
|
||
|
# get two face normals for the candidate points
|
||
|
normals = mesh.face_normals[two_candidates[c_mask]]
|
||
|
# compute normalized surface-point to query-point vectors
|
||
|
vectors = (query_vector[idxs[c_mask]] /
|
||
|
two_dists[c_mask].reshape(-1, 2, 1) ** 0.5)
|
||
|
# compare enclosed angle for both face normals
|
||
|
dots = (normals * vectors).sum(axis=2)
|
||
|
|
||
|
# take the idx with the most positive angle
|
||
|
# allows for selecting the correct candidate triangle id
|
||
|
c_idxs = dots.argmax(axis=1)
|
||
|
|
||
|
# correct triangle ids where necessary
|
||
|
# closest point and distance remain valid
|
||
|
result_tid[c_mask] = two_candidates[c_mask, c_idxs]
|
||
|
|
||
|
# we were comparing the distance squared so
|
||
|
# now take the square root in one vectorized operation
|
||
|
result_distance **= .5
|
||
|
|
||
|
return result_close, result_distance, result_tid
|
||
|
|
||
|
|
||
|
def signed_distance(mesh, points):
|
||
|
"""
|
||
|
Find the signed distance from a mesh to a list of points.
|
||
|
|
||
|
* Points OUTSIDE the mesh will have NEGATIVE distance
|
||
|
* Points within tol.merge of the surface will have POSITIVE distance
|
||
|
* Points INSIDE the mesh will have POSITIVE distance
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
mesh : Trimesh object
|
||
|
points : (n,3) float, list of points in space
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
signed_distance : (n,3) float, signed distance from point to mesh
|
||
|
"""
|
||
|
# make sure we have a numpy array
|
||
|
points = np.asanyarray(points, dtype=np.float64)
|
||
|
|
||
|
# find the closest point on the mesh to the queried points
|
||
|
closest, distance, triangle_id = closest_point(mesh, points)
|
||
|
|
||
|
# we only care about nonzero distances
|
||
|
nonzero = distance > tol.merge
|
||
|
|
||
|
if not nonzero.any():
|
||
|
return distance
|
||
|
|
||
|
inside = mesh.ray.contains_points(points[nonzero])
|
||
|
sign = (inside.astype(int) * 2) - 1
|
||
|
|
||
|
# apply sign to previously computed distance
|
||
|
distance[nonzero] *= sign
|
||
|
|
||
|
return distance
|
||
|
|
||
|
|
||
|
class ProximityQuery(object):
|
||
|
"""
|
||
|
Proximity queries for the current mesh.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, mesh):
|
||
|
self._mesh = mesh
|
||
|
|
||
|
@log_time
|
||
|
def on_surface(self, points):
|
||
|
"""
|
||
|
Given list of points, for each point find the closest point
|
||
|
on any triangle of the mesh.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
points : (m,3) float, points in space
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
closest : (m,3) float, closest point on triangles for each point
|
||
|
distance : (m,) float, distance
|
||
|
triangle_id : (m,) int, index of closest triangle for each point
|
||
|
"""
|
||
|
return closest_point(mesh=self._mesh,
|
||
|
points=points)
|
||
|
|
||
|
def vertex(self, points):
|
||
|
"""
|
||
|
Given a set of points, return the closest vertex index to each point
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
points : (n,3) float, list of points in space
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
distance : (n,) float, distance from source point to vertex
|
||
|
vertex_id : (n,) int, index of mesh.vertices which is closest
|
||
|
"""
|
||
|
tree = self._mesh.kdtree
|
||
|
return tree.query(points)
|
||
|
|
||
|
def signed_distance(self, points):
|
||
|
"""
|
||
|
Find the signed distance from a mesh to a list of points.
|
||
|
|
||
|
* Points OUTSIDE the mesh will have NEGATIVE distance
|
||
|
* Points within tol.merge of the surface will have POSITIVE distance
|
||
|
* Points INSIDE the mesh will have POSITIVE distance
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
points : (n,3) float, list of points in space
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
signed_distance : (n,3) float, signed distance from point to mesh
|
||
|
"""
|
||
|
return signed_distance(self._mesh, points)
|
||
|
|
||
|
|
||
|
def longest_ray(mesh, points, directions):
|
||
|
"""
|
||
|
Find the lengths of the longest rays which do not intersect the mesh
|
||
|
cast from a list of points in the provided directions.
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
points : (n,3) float, list of points in space
|
||
|
directions : (n,3) float, directions of rays
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
signed_distance : (n,) float, length of rays
|
||
|
"""
|
||
|
points = np.asanyarray(points, dtype=np.float64)
|
||
|
if not util.is_shape(points, (-1, 3)):
|
||
|
raise ValueError('points must be (n,3)!')
|
||
|
|
||
|
directions = np.asanyarray(directions, dtype=np.float64)
|
||
|
if not util.is_shape(directions, (-1, 3)):
|
||
|
raise ValueError('directions must be (n,3)!')
|
||
|
|
||
|
if len(points) != len(directions):
|
||
|
raise ValueError('number of points must equal number of directions!')
|
||
|
|
||
|
faces, rays, locations = mesh.ray.intersects_id(points, directions,
|
||
|
return_locations=True,
|
||
|
multiple_hits=True)
|
||
|
if len(rays) > 0:
|
||
|
distances = np.linalg.norm(locations - points[rays],
|
||
|
axis=1)
|
||
|
else:
|
||
|
distances = np.array([])
|
||
|
|
||
|
# Reject intersections at distance less than tol.planar
|
||
|
rays = rays[distances > tol.planar]
|
||
|
distances = distances[distances > tol.planar]
|
||
|
|
||
|
# Add infinite length for those with no valid intersection
|
||
|
no_intersections = np.setdiff1d(np.arange(len(points)), rays)
|
||
|
rays = np.concatenate((rays, no_intersections))
|
||
|
distances = np.concatenate((distances,
|
||
|
np.repeat(np.inf,
|
||
|
len(no_intersections))))
|
||
|
return group_min(rays, distances)
|
||
|
|
||
|
|
||
|
def max_tangent_sphere(mesh,
|
||
|
points,
|
||
|
inwards=True,
|
||
|
normals=None,
|
||
|
threshold=1e-6,
|
||
|
max_iter=100):
|
||
|
"""
|
||
|
Find the center and radius of the sphere which is tangent to
|
||
|
the mesh at the given point and at least one more point with no
|
||
|
non-tangential intersections with the mesh.
|
||
|
|
||
|
Masatomo Inui, Nobuyuki Umezu & Ryohei Shimane (2016)
|
||
|
Shrinking sphere:
|
||
|
A parallel algorithm for computing the thickness of 3D objects,
|
||
|
Computer-Aided Design and Applications, 13:2, 199-207,
|
||
|
DOI: 10.1080/16864360.2015.1084186
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
points : (n,3) float, list of points in space
|
||
|
inwards : bool, whether to have the sphere inside or outside the mesh
|
||
|
normals : (n,3) float, normals of the mesh at the given points
|
||
|
None, compute this automatically.
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
centers : (n,3) float, centers of spheres
|
||
|
radii : (n,) float, radii of spheres
|
||
|
|
||
|
"""
|
||
|
points = np.asanyarray(points, dtype=np.float64)
|
||
|
if not util.is_shape(points, (-1, 3)):
|
||
|
raise ValueError('points must be (n,3)!')
|
||
|
|
||
|
if normals is not None:
|
||
|
normals = np.asanyarray(normals, dtype=np.float64)
|
||
|
if not util.is_shape(normals, (-1, 3)):
|
||
|
raise ValueError('normals must be (n,3)!')
|
||
|
|
||
|
if len(points) != len(normals):
|
||
|
raise ValueError('number of points must equal number of normals!')
|
||
|
else:
|
||
|
normals = mesh.face_normals[closest_point(mesh, points)[2]]
|
||
|
|
||
|
if inwards:
|
||
|
normals = -normals
|
||
|
|
||
|
# Find initial tangent spheres
|
||
|
distances = longest_ray(mesh, points, normals)
|
||
|
radii = distances * 0.5
|
||
|
not_converged = np.ones(len(points), dtype=np.bool) # boolean mask
|
||
|
|
||
|
# If ray is infinite, find the vertex which is furthest from our point
|
||
|
# when projected onto the ray. I.e. find v which maximises
|
||
|
# (v-p).n = v.n - p.n.
|
||
|
# We use a loop rather a vectorised approach to reduce memory cost
|
||
|
# it also seems to run faster.
|
||
|
for i in np.where(np.isinf(distances))[0]:
|
||
|
projections = np.dot(mesh.vertices - points[i], normals[i])
|
||
|
|
||
|
# If no points lie outside the tangent plane, then the radius is infinite
|
||
|
# otherwise we have a point outside the tangent plane, take the one with maximal
|
||
|
# projection
|
||
|
if projections.max() < tol.planar:
|
||
|
radii[i] = np.inf
|
||
|
not_converged[i] = False
|
||
|
else:
|
||
|
vertex = mesh.vertices[projections.argmax()]
|
||
|
radii[i] = (np.dot(vertex - points[i], vertex - points[i]) /
|
||
|
(2 * np.dot(vertex - points[i], normals[i])))
|
||
|
|
||
|
# Compute centers
|
||
|
centers = points + normals * np.nan_to_num(radii.reshape(-1, 1))
|
||
|
centers[np.isinf(radii)] = [np.nan, np.nan, np.nan]
|
||
|
|
||
|
# Our iterative process terminates when the difference in sphere
|
||
|
# radius is less than threshold*D
|
||
|
D = np.linalg.norm(mesh.bounds[1] - mesh.bounds[0])
|
||
|
convergence_threshold = threshold * D
|
||
|
n_iter = 0
|
||
|
while not_converged.sum() > 0 and n_iter < max_iter:
|
||
|
n_iter += 1
|
||
|
n_points, n_dists, n_faces = mesh.nearest.on_surface(
|
||
|
centers[not_converged])
|
||
|
|
||
|
# If the distance to the nearest point is the same as the distance
|
||
|
# to the start point then we are done.
|
||
|
done = np.abs(
|
||
|
n_dists -
|
||
|
np.linalg.norm(
|
||
|
centers[not_converged] -
|
||
|
points[not_converged],
|
||
|
axis=1)) < tol.planar
|
||
|
not_converged[np.where(not_converged)[0][done]] = False
|
||
|
|
||
|
# Otherwise find the radius and center of the sphere tangent to the mesh
|
||
|
# at the point and the nearest point.
|
||
|
diff = n_points[~done] - points[not_converged]
|
||
|
old_radii = radii[not_converged].copy()
|
||
|
# np.einsum produces element wise dot product
|
||
|
radii[not_converged] = (np.einsum('ij, ij->i',
|
||
|
diff,
|
||
|
diff) /
|
||
|
(2 * np.einsum('ij, ij->i',
|
||
|
diff,
|
||
|
normals[not_converged])))
|
||
|
centers[not_converged] = points[not_converged] + \
|
||
|
normals[not_converged] * radii[not_converged].reshape(-1, 1)
|
||
|
|
||
|
# If change in radius is less than threshold we have converged
|
||
|
cvged = old_radii - radii[not_converged] < convergence_threshold
|
||
|
not_converged[np.where(not_converged)[0][cvged]] = False
|
||
|
|
||
|
return centers, radii
|
||
|
|
||
|
|
||
|
def thickness(mesh,
|
||
|
points,
|
||
|
exterior=False,
|
||
|
normals=None,
|
||
|
method='max_sphere'):
|
||
|
"""
|
||
|
Find the thickness of the mesh at the given points.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
points : (n,3) float, list of points in space
|
||
|
exterior : bool, whether to compute the exterior thickness
|
||
|
(a.k.a. reach)
|
||
|
normals : (n,3) float, normals of the mesh at the given points
|
||
|
None, compute this automatically.
|
||
|
method : string, one of 'max_sphere' or 'ray'
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
thickness : (n,) float, thickness
|
||
|
"""
|
||
|
points = np.asanyarray(points, dtype=np.float64)
|
||
|
if not util.is_shape(points, (-1, 3)):
|
||
|
raise ValueError('points must be (n,3)!')
|
||
|
|
||
|
if normals is not None:
|
||
|
normals = np.asanyarray(normals, dtype=np.float64)
|
||
|
if not util.is_shape(normals, (-1, 3)):
|
||
|
raise ValueError('normals must be (n,3)!')
|
||
|
|
||
|
if len(points) != len(normals):
|
||
|
raise ValueError('number of points must equal number of normals!')
|
||
|
else:
|
||
|
normals = mesh.face_normals[closest_point(mesh, points)[2]]
|
||
|
|
||
|
if method == 'max_sphere':
|
||
|
centers, radius = max_tangent_sphere(mesh=mesh,
|
||
|
points=points,
|
||
|
inwards=not exterior,
|
||
|
normals=normals)
|
||
|
thickness = radius * 2
|
||
|
return thickness
|
||
|
|
||
|
elif method == 'ray':
|
||
|
if exterior:
|
||
|
return longest_ray(mesh, points, normals)
|
||
|
else:
|
||
|
return longest_ray(mesh, points, -normals)
|
||
|
else:
|
||
|
raise ValueError('Invalid method, use "max_sphere" or "ray"')
|