city_retrofit/hub/helpers/peak_loads.py

72 lines
3.1 KiB
Python
Raw Normal View History

2023-05-01 10:37:51 -04:00
import math
2023-04-27 13:31:00 -04:00
2023-05-01 10:37:51 -04:00
import hub.helpers.constants as cte
from hub.helpers.peak_calculation.loads_calculation import LoadsCalculation
_MONTH_STARTING_HOUR = [0, 744, 1416, 2160, 2880, 3624, 4344, 5088, 5832, 6552, 7296, 8016, math.inf]
2023-04-27 13:31:00 -04:00
def peak_loads_from_hourly(hourly_values):
month = 1
peaks = [0 for _ in range(12)]
for i, value in enumerate(hourly_values):
if _MONTH_STARTING_HOUR[month] <= i:
month += 1
if value > peaks[month-1]:
peaks[month-1] = value
return peaks
2023-05-01 10:37:51 -04:00
def heating_peak_loads_from_methodology(building):
2023-04-27 13:31:00 -04:00
monthly_heating_loads = []
2023-05-01 10:37:51 -04:00
ambient_temperature = building.external_temperature[cte.HOUR]['epw']
2023-04-27 13:31:00 -04:00
for month in range(0, 12):
ground_temperature = building.ground_temperature[cte.MONTH]['2'][month]
heating_ambient_temperature = 100
start_hour = _MONTH_STARTING_HOUR[month]
end_hour = 8760
if month < 11:
end_hour = _MONTH_STARTING_HOUR[month + 1]
for hour in range(start_hour, end_hour):
temperature = ambient_temperature[hour]
if temperature < heating_ambient_temperature:
heating_ambient_temperature = temperature
loads = LoadsCalculation(building)
heating_load_transmitted = loads.get_heating_transmitted_load(heating_ambient_temperature, ground_temperature)
heating_load_ventilation_sensible = loads.get_heating_ventilation_load_sensible(heating_ambient_temperature)
heating_load_ventilation_latent = 0
heating_load = heating_load_transmitted + heating_load_ventilation_sensible + heating_load_ventilation_latent
2023-05-01 10:37:51 -04:00
if heating_load < 0:
heating_load = 0
monthly_heating_loads.append(heating_load)
return monthly_heating_loads
2023-04-27 13:31:00 -04:00
2023-05-01 10:37:51 -04:00
def cooling_peak_loads_from_methodology(building):
monthly_cooling_loads = []
ambient_temperature = building.external_temperature[cte.HOUR]['epw']
for month in range(0, 12):
ground_temperature = building.ground_temperature[cte.MONTH]['2'][month]
cooling_ambient_temperature = -100
cooling_calculation_hour = -1
start_hour = _MONTH_STARTING_HOUR[month]
end_hour = 8760
if month < 11:
end_hour = _MONTH_STARTING_HOUR[month + 1]
for hour in range(start_hour, end_hour):
temperature = ambient_temperature[hour]
if temperature > cooling_ambient_temperature:
cooling_ambient_temperature = temperature
cooling_calculation_hour = hour
loads = LoadsCalculation(building)
2023-04-27 13:31:00 -04:00
cooling_load_transmitted = loads.get_cooling_transmitted_load(cooling_ambient_temperature, ground_temperature)
cooling_load_renovation_sensible = loads.get_cooling_ventilation_load_sensible(cooling_ambient_temperature)
cooling_load_internal_gains_sensible = loads.get_internal_load_sensible()
2023-05-01 10:37:51 -04:00
cooling_load_radiation = loads.get_radiation_load('sra', cooling_calculation_hour)
2023-04-27 13:31:00 -04:00
cooling_load_sensible = cooling_load_transmitted + cooling_load_renovation_sensible - cooling_load_radiation \
- cooling_load_internal_gains_sensible
cooling_load_latent = 0
cooling_load = cooling_load_sensible + cooling_load_latent
if cooling_load > 0:
cooling_load = 0
2023-05-01 10:37:51 -04:00
monthly_cooling_loads.append(abs(cooling_load))
return monthly_cooling_loads