forked from s_ranjbar/city_retrofit
adding peak loads partial
This commit is contained in:
parent
af0e2a7c69
commit
7f41e7d017
|
@ -44,6 +44,8 @@ class Building(CityObject):
|
|||
self._lighting_electrical_demand = dict()
|
||||
self._appliances_electrical_demand = dict()
|
||||
self._domestic_hot_water_heat_demand = dict()
|
||||
self._heating_peak_load = dict()
|
||||
self._cooling_peak_load = dict()
|
||||
self._eave_height = None
|
||||
self._grounds = []
|
||||
self._roofs = []
|
||||
|
@ -362,6 +364,38 @@ class Building(CityObject):
|
|||
"""
|
||||
self._domestic_hot_water_heat_demand = value
|
||||
|
||||
@property
|
||||
def heating_peak_load(self) -> dict:
|
||||
"""
|
||||
Get heating peak load in W
|
||||
:return: dict{DataFrame(float)}
|
||||
"""
|
||||
return self._heating_peak_load
|
||||
|
||||
@heating_peak_load.setter
|
||||
def heating_peak_load(self, value):
|
||||
"""
|
||||
Set heating peak load in W
|
||||
:param value: dict{DataFrame(float)}
|
||||
"""
|
||||
self._heating_peak_load = value
|
||||
|
||||
@property
|
||||
def cooling_peak_load(self) -> dict:
|
||||
"""
|
||||
Get cooling peak load in W
|
||||
:return: dict{DataFrame(float)}
|
||||
"""
|
||||
return self._cooling_peak_load
|
||||
|
||||
@cooling_peak_load.setter
|
||||
def cooling_peak_load(self, value):
|
||||
"""
|
||||
Set peak load in W
|
||||
:param value: dict{DataFrame(float)}
|
||||
"""
|
||||
self._cooling_peak_load = value
|
||||
|
||||
@property
|
||||
def eave_height(self):
|
||||
"""
|
||||
|
|
|
@ -110,6 +110,14 @@ class CityObject:
|
|||
"""
|
||||
return self._surfaces
|
||||
|
||||
@surfaces.setter
|
||||
def surfaces(self, value):
|
||||
"""
|
||||
Set city object surfaces
|
||||
:return: [Surface]
|
||||
"""
|
||||
self._surfaces = value
|
||||
|
||||
def surface(self, name) -> Union[Surface, None]:
|
||||
"""
|
||||
Get the city object surface with a given name
|
||||
|
|
|
@ -185,6 +185,7 @@ MIN_FLOAT = float('-inf')
|
|||
# Tools
|
||||
SRA = 'sra'
|
||||
INSEL_MEB = 'insel meb'
|
||||
PEAK_LOAD = 'peak load'
|
||||
|
||||
# Costs units
|
||||
CURRENCY_PER_SQM = 'currency/m2'
|
||||
|
|
|
@ -71,8 +71,11 @@ class Geojson:
|
|||
polygon = Polygon(points)
|
||||
polygon.area = igh.ground_area(points)
|
||||
surface = Surface(polygon, polygon)
|
||||
if len(buildings) == 1:
|
||||
buildings[0].surfaces.append(surface)
|
||||
else:
|
||||
surfaces.append(surface)
|
||||
buildings.append(Building(f'{name}_zone_{zone}', surfaces, year_of_construction, function))
|
||||
buildings.append(Building(f'{name}', surfaces, year_of_construction, function))
|
||||
return buildings
|
||||
|
||||
@staticmethod
|
||||
|
@ -82,9 +85,10 @@ class Geojson:
|
|||
buildings = []
|
||||
|
||||
for zone, lod0_building in enumerate(lod0_buildings):
|
||||
# print(zone, lod0_building.name)
|
||||
volume = 0
|
||||
for surface in lod0_building.grounds:
|
||||
|
||||
volume = surface.solid_polygon.area * height
|
||||
volume = volume + surface.solid_polygon.area * height
|
||||
surfaces.append(surface)
|
||||
roof_coordinates = []
|
||||
# adding a roof means invert the polygon coordinates and change the Z value
|
||||
|
@ -112,8 +116,7 @@ class Geojson:
|
|||
polygon = Polygon(wall_coordinates)
|
||||
wall = Surface(polygon, polygon)
|
||||
surfaces.append(wall)
|
||||
|
||||
building = Building(f'{name}_zone_{zone}', surfaces, year_of_construction, function)
|
||||
building = Building(f'{name}', surfaces, year_of_construction, function)
|
||||
building.volume = volume
|
||||
buildings.append(building)
|
||||
|
||||
|
@ -218,7 +221,7 @@ class Geojson:
|
|||
polygons = self._get_polygons(polygons, coordinates)
|
||||
for polygon in polygons:
|
||||
if extrusion_height == 0:
|
||||
buildings = buildings + Geojson._create_buildings_lod0(f'{building_name}_part_{part}',
|
||||
buildings = buildings + Geojson._create_buildings_lod0(f'{building_name}',
|
||||
year_of_construction,
|
||||
function,
|
||||
[polygon])
|
||||
|
@ -226,11 +229,22 @@ class Geojson:
|
|||
else:
|
||||
if self._max_z < extrusion_height:
|
||||
self._max_z = extrusion_height
|
||||
buildings = buildings + Geojson._create_buildings_lod1(f'{building_name}_part_{part}',
|
||||
if part == 0:
|
||||
buildings = buildings + Geojson._create_buildings_lod1(f'{building_name}',
|
||||
year_of_construction,
|
||||
function,
|
||||
extrusion_height,
|
||||
[polygon])
|
||||
else:
|
||||
new_part = Geojson._create_buildings_lod1(f'{building_name}',
|
||||
year_of_construction,
|
||||
function,
|
||||
extrusion_height,
|
||||
[polygon])
|
||||
surfaces = buildings[len(buildings) - 1].surfaces + new_part[0].surfaces
|
||||
volume = buildings[len(buildings) - 1].volume + new_part[0].volume
|
||||
buildings[len(buildings) - 1] = Building(f'{building_name}', surfaces, year_of_construction, function)
|
||||
buildings[len(buildings) - 1].volume = volume
|
||||
|
||||
self._city = City([self._min_x, self._min_y, 0.0], [self._max_x, self._max_y, self._max_z], 'epsg:26911')
|
||||
for building in buildings:
|
||||
|
|
|
@ -107,6 +107,9 @@ class GeometryFactory:
|
|||
Enrich the city given to the class using the class given handler
|
||||
:return: City
|
||||
"""
|
||||
if self._data_frame is None:
|
||||
self._data_frame = geopandas.read_file(self._path)
|
||||
return GPandas(self._data_frame).city
|
||||
return Geojson(self._path,
|
||||
self._name_field,
|
||||
self._height_field,
|
||||
self._year_of_construction_field,
|
||||
self._function_field,
|
||||
self._function_to_hub).city
|
||||
|
|
|
@ -4,7 +4,6 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|||
Copyright © 2022 Concordia CERC group
|
||||
Project Coder Guillermo.GutierrezMorote@concordia.ca
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
import csv
|
||||
|
@ -40,60 +39,55 @@ class InselMonthlyEnergyBalance:
|
|||
monthly_cooling = pd.DataFrame(cooling, columns=[cte.INSEL_MEB]).astype(float)
|
||||
return monthly_heating, monthly_cooling
|
||||
|
||||
def _dhw_demand(self):
|
||||
def _dhw_and_electric_demand(self):
|
||||
for building in self._city.buildings:
|
||||
domestic_hot_water_demand = []
|
||||
if building.internal_zones[0].thermal_zones is None:
|
||||
domestic_hot_water_demand = [0] * 12
|
||||
else:
|
||||
thermal_zone = building.internal_zones[0].thermal_zones[0]
|
||||
area = thermal_zone.total_floor_area
|
||||
cold_water = building.cold_water_temperature[cte.MONTH]['epw']
|
||||
for month in range(0, 12):
|
||||
total_dhw_demand = 0
|
||||
for schedule in thermal_zone.domestic_hot_water.schedules:
|
||||
total_day = 0
|
||||
for value in schedule.values:
|
||||
total_day += value
|
||||
for day_type in schedule.day_types:
|
||||
demand = thermal_zone.domestic_hot_water.peak_flow * cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY \
|
||||
* (thermal_zone.domestic_hot_water.service_temperature - cold_water[month])
|
||||
total_dhw_demand += total_day * cte.DAYS_A_MONTH[day_type][month] * demand
|
||||
domestic_hot_water_demand.append(total_dhw_demand * area)
|
||||
|
||||
building.domestic_hot_water_heat_demand[cte.MONTH] = \
|
||||
pd.DataFrame(domestic_hot_water_demand, columns=[cte.INSEL_MEB])
|
||||
|
||||
def _electrical_demand(self):
|
||||
for building in self._city.buildings:
|
||||
lighting_demand = []
|
||||
appliances_demand = []
|
||||
if building.internal_zones[0].thermal_zones is None:
|
||||
domestic_hot_water_demand = [0] * 12
|
||||
lighting_demand = [0] * 12
|
||||
appliances_demand = [0] * 12
|
||||
else:
|
||||
thermal_zone = building.internal_zones[0].thermal_zones[0]
|
||||
area = thermal_zone.total_floor_area
|
||||
cold_water = building.cold_water_temperature[cte.MONTH]['epw']
|
||||
peak_flow = thermal_zone.domestic_hot_water.peak_flow
|
||||
service_temperature = thermal_zone.domestic_hot_water.service_temperature
|
||||
lighting_density = thermal_zone.lighting.density
|
||||
appliances_density = thermal_zone.appliances.density
|
||||
|
||||
for month in range(0, 12):
|
||||
total_dhw_demand = 0
|
||||
total_lighting = 0
|
||||
total_appliances = 0
|
||||
|
||||
for schedule in thermal_zone.lighting.schedules:
|
||||
total_day = 0
|
||||
for value in schedule.values:
|
||||
total_day += value
|
||||
for day_type in schedule.day_types:
|
||||
total_lighting += total_day * cte.DAYS_A_MONTH[day_type][month] * thermal_zone.lighting.density
|
||||
total_lighting += total_day * cte.DAYS_A_MONTH[day_type][month] * lighting_density
|
||||
lighting_demand.append(total_lighting * area)
|
||||
|
||||
total_appliances = 0
|
||||
for schedule in thermal_zone.appliances.schedules:
|
||||
total_day = 0
|
||||
for value in schedule.values:
|
||||
total_day += value
|
||||
for day_type in schedule.day_types:
|
||||
total_appliances += total_day * cte.DAYS_A_MONTH[day_type][month] * thermal_zone.appliances.density
|
||||
total_appliances += total_day * cte.DAYS_A_MONTH[day_type][month] * appliances_density
|
||||
appliances_demand.append(total_appliances * area)
|
||||
|
||||
for schedule in thermal_zone.domestic_hot_water.schedules:
|
||||
total_day = 0
|
||||
for value in schedule.values:
|
||||
total_day += value
|
||||
for day_type in schedule.day_types:
|
||||
demand = peak_flow * cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * (service_temperature - cold_water[month])
|
||||
total_dhw_demand += total_day * cte.DAYS_A_MONTH[day_type][month] * demand
|
||||
domestic_hot_water_demand.append(total_dhw_demand * area)
|
||||
|
||||
building.domestic_hot_water_heat_demand[cte.MONTH] = pd.DataFrame(domestic_hot_water_demand, columns=[cte.INSEL_MEB])
|
||||
building.lighting_electrical_demand[cte.MONTH] = pd.DataFrame(lighting_demand, columns=[cte.INSEL_MEB])
|
||||
building.appliances_electrical_demand[cte.MONTH] = pd.DataFrame(appliances_demand, columns=[cte.INSEL_MEB])
|
||||
|
||||
|
@ -109,5 +103,4 @@ class InselMonthlyEnergyBalance:
|
|||
building.cooling[cte.YEAR] = pd.DataFrame(
|
||||
[building.cooling[cte.MONTH][cte.INSEL_MEB].astype(float).sum()], columns=[cte.INSEL_MEB]
|
||||
)
|
||||
self._dhw_demand()
|
||||
self._electrical_demand()
|
||||
self._dhw_and_electric_demand()
|
||||
|
|
0
hub/imports/results/peak_calculation/__init__.py
Normal file
0
hub/imports/results/peak_calculation/__init__.py
Normal file
118
hub/imports/results/peak_calculation/loads_calculation.py
Normal file
118
hub/imports/results/peak_calculation/loads_calculation.py
Normal file
|
@ -0,0 +1,118 @@
|
|||
"""
|
||||
Calculation of loads for peak heating and cooling
|
||||
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||||
Copyright © 2022 Concordia CERC group
|
||||
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||
"""
|
||||
|
||||
|
||||
import hub.helpers.constants as cte
|
||||
|
||||
|
||||
class LoadsCalculation:
|
||||
"""
|
||||
LoadsCalculation class
|
||||
"""
|
||||
def __init__(self, building):
|
||||
self._building = building
|
||||
|
||||
@staticmethod
|
||||
def _get_load_transmitted(thermal_zone, internal_temperature, ambient_temperature, ground_temperature):
|
||||
load_transmitted_opaque = 0
|
||||
load_transmitted_transparent = 0
|
||||
for thermal_boundary in thermal_zone.thermal_boundaries:
|
||||
if thermal_boundary.type == cte.GROUND:
|
||||
external_temperature = ground_temperature
|
||||
elif thermal_boundary.type == cte.INTERIOR_WALL:
|
||||
external_temperature = internal_temperature
|
||||
else:
|
||||
external_temperature = ambient_temperature
|
||||
|
||||
load_transmitted_opaque += thermal_boundary.u_value * thermal_boundary.opaque_area \
|
||||
* (internal_temperature - external_temperature)
|
||||
for thermal_opening in thermal_boundary.thermal_openings:
|
||||
load_transmitted_transparent += thermal_opening.overall_u_value \
|
||||
* (internal_temperature - external_temperature)
|
||||
load_transmitted_opaque += thermal_zone.additional_thermal_bridge_u_value * thermal_zone.footprint_area \
|
||||
* (internal_temperature - ambient_temperature)
|
||||
load_transmitted = load_transmitted_opaque + load_transmitted_transparent
|
||||
return load_transmitted
|
||||
|
||||
@staticmethod
|
||||
def _get_load_ventilation(thermal_zone, internal_temperature, ambient_temperature):
|
||||
load_renovation_sensible = 0
|
||||
for usage in thermal_zone.usages:
|
||||
load_renovation_sensible += cte.AIR_DENSITY * cte.AIR_HEAT_CAPACITY * usage.mechanical_air_change \
|
||||
* thermal_zone.volume / cte.HOUR_TO_MINUTES / cte.MINUTES_TO_SECONDS \
|
||||
* (internal_temperature - ambient_temperature)
|
||||
|
||||
load_infiltration_sensible = cte.AIR_DENSITY * cte.AIR_HEAT_CAPACITY * thermal_zone.infiltration_rate_system_off \
|
||||
* thermal_zone.volume / cte.HOUR_TO_MINUTES / cte.MINUTES_TO_SECONDS \
|
||||
* (internal_temperature - ambient_temperature)
|
||||
|
||||
load_ventilation = load_renovation_sensible + load_infiltration_sensible
|
||||
|
||||
return load_ventilation
|
||||
|
||||
def get_heating_transmitted_load(self, ambient_temperature, ground_temperature):
|
||||
heating_load_transmitted = 0
|
||||
for internal_zone in self._building.internal_zones:
|
||||
for thermal_zone in internal_zone.thermal_zones:
|
||||
internal_temperature = thermal_zone.thermal_control.mean_heating_set_point
|
||||
heating_load_transmitted += self._get_load_transmitted(thermal_zone, internal_temperature, ambient_temperature,
|
||||
ground_temperature)
|
||||
return heating_load_transmitted
|
||||
|
||||
def get_cooling_transmitted_load(self, ambient_temperature, ground_temperature):
|
||||
cooling_load_transmitted = 0
|
||||
for internal_zone in self._building.internal_zones:
|
||||
for thermal_zone in internal_zone.thermal_zones:
|
||||
internal_temperature = thermal_zone.thermal_control.mean_cooling_set_point
|
||||
cooling_load_transmitted += self._get_load_transmitted(thermal_zone, internal_temperature, ambient_temperature,
|
||||
ground_temperature)
|
||||
return cooling_load_transmitted
|
||||
|
||||
def get_heating_ventilation_load_sensible(self, ambient_temperature):
|
||||
heating_ventilation_load = 0
|
||||
for internal_zone in self._building.internal_zones:
|
||||
for thermal_zone in internal_zone.thermal_zones:
|
||||
internal_temperature = thermal_zone.thermal_control.mean_heating_set_point
|
||||
heating_ventilation_load += self._get_load_ventilation(thermal_zone, internal_temperature, ambient_temperature)
|
||||
return heating_ventilation_load
|
||||
|
||||
def get_cooling_ventilation_load_sensible(self, ambient_temperature):
|
||||
cooling_ventilation_load = 0
|
||||
for internal_zone in self._building.internal_zones:
|
||||
for thermal_zone in internal_zone.thermal_zones:
|
||||
internal_temperature = thermal_zone.thermal_control.mean_cooling_set_point
|
||||
cooling_ventilation_load += self._get_load_ventilation(thermal_zone, internal_temperature, ambient_temperature)
|
||||
return cooling_ventilation_load
|
||||
|
||||
def get_internal_load_sensible(self):
|
||||
cooling_load_occupancy_sensible = 0
|
||||
cooling_load_lighting = 0
|
||||
cooling_load_equipment_sensible = 0
|
||||
for internal_zone in self._building.internal_zones:
|
||||
for thermal_zone in internal_zone.thermal_zones:
|
||||
cooling_load_occupancy_sensible += (thermal_zone.occupancy.sensible_convective_internal_gain
|
||||
+ thermal_zone.occupancy.sensible_radiative_internal_gain) \
|
||||
* thermal_zone.footprint_area
|
||||
cooling_load_lighting += (thermal_zone.lighting.density * thermal_zone.lighting.convective_fraction
|
||||
+ thermal_zone.lighting.density * thermal_zone.lighting.radiative_fraction) \
|
||||
* thermal_zone.footprint_area
|
||||
cooling_load_equipment_sensible += (thermal_zone.appliances.density * thermal_zone.appliances.convective_fraction
|
||||
+ thermal_zone.appliances.density * thermal_zone.appliances.radiative_fraction) \
|
||||
* thermal_zone.footprint_area
|
||||
internal_load = cooling_load_occupancy_sensible + cooling_load_lighting + cooling_load_equipment_sensible
|
||||
return internal_load
|
||||
|
||||
def get_radiation_load(self, irradiance_format, hour):
|
||||
cooling_load_radiation = 0
|
||||
for internal_zone in self._building.internal_zones:
|
||||
for thermal_zone in internal_zone.thermal_zones:
|
||||
for thermal_boundary in thermal_zone.thermal_boundaries:
|
||||
for thermal_opening in thermal_boundary.thermal_openings:
|
||||
radiation = thermal_boundary.parent_surface.global_irradiance[cte.HOUR][irradiance_format][hour]
|
||||
cooling_load_radiation += thermal_opening.area * (1 - thermal_opening.frame_ratio) * thermal_opening.g_value \
|
||||
* radiation
|
||||
return cooling_load_radiation
|
61
hub/imports/results/peak_load.py
Normal file
61
hub/imports/results/peak_load.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
import hub.helpers.constants as cte
|
||||
from hub.imports.results.peak_calculation.loads_calculation import LoadsCalculation
|
||||
|
||||
|
||||
class PeakLoad:
|
||||
|
||||
_MONTH_STARTING_HOUR = [0, 744, 1416, 2160, 2880, 3624, 4344, 5088, 5832, 6552, 7296, 8016]
|
||||
|
||||
def __init__(self, city):
|
||||
self._city = city
|
||||
self._weather_format = 'epw'
|
||||
|
||||
def enrich(self):
|
||||
for building in self._city.buildings:
|
||||
monthly_heating_loads = []
|
||||
monthly_cooling_loads = []
|
||||
ambient_temperature = building.external_temperature[cte.HOUR][self._weather_format]
|
||||
for month in range(0, 12):
|
||||
ground_temperature = building.ground_temperature[cte.MONTH]['2'][month]
|
||||
heating_ambient_temperature = 100
|
||||
cooling_ambient_temperature = -100
|
||||
heating_calculation_hour = -1
|
||||
cooling_calculation_hour = -1
|
||||
start_hour = self._MONTH_STARTING_HOUR[month]
|
||||
end_hour = 8760
|
||||
if month < 11:
|
||||
end_hour = self._MONTH_STARTING_HOUR[month + 1]
|
||||
for hour in range(start_hour, end_hour):
|
||||
temperature = ambient_temperature[hour]
|
||||
if temperature < heating_ambient_temperature:
|
||||
heating_ambient_temperature = temperature
|
||||
heating_calculation_hour = hour
|
||||
if temperature > cooling_ambient_temperature:
|
||||
cooling_ambient_temperature = temperature
|
||||
cooling_calculation_hour = hour
|
||||
|
||||
loads = LoadsCalculation(building)
|
||||
heating_load_transmitted = loads.get_heating_transmitted_load(heating_ambient_temperature, ground_temperature)
|
||||
heating_load_ventilation_sensible = loads.get_heating_ventilation_load_sensible(heating_ambient_temperature)
|
||||
heating_load_ventilation_latent = 0
|
||||
heating_load = heating_load_transmitted + heating_load_ventilation_sensible + heating_load_ventilation_latent
|
||||
|
||||
cooling_load_transmitted = loads.get_cooling_transmitted_load(cooling_ambient_temperature, ground_temperature)
|
||||
cooling_load_renovation_sensible = loads.get_cooling_ventilation_load_sensible(cooling_ambient_temperature)
|
||||
cooling_load_internal_gains_sensible = loads.get_internal_load_sensible()
|
||||
cooling_load_radiation = loads.get_radiation_load(self._irradiance_format, cooling_calculation_hour)
|
||||
cooling_load_sensible = cooling_load_transmitted + cooling_load_renovation_sensible - cooling_load_radiation \
|
||||
- cooling_load_internal_gains_sensible
|
||||
|
||||
cooling_load_latent = 0
|
||||
cooling_load = cooling_load_sensible + cooling_load_latent
|
||||
if heating_load < 0:
|
||||
heating_load = 0
|
||||
if cooling_load > 0:
|
||||
cooling_load = 0
|
||||
monthly_heating_loads.append(heating_load)
|
||||
monthly_cooling_loads.append(cooling_load)
|
||||
|
||||
self._results[building.name] = {'monthly heating peak load': monthly_heating_loads,
|
||||
'monthly cooling peak load': monthly_cooling_loads}
|
||||
self._print_results()
|
|
@ -9,6 +9,7 @@ from pathlib import Path
|
|||
|
||||
from hub.helpers.utils import validate_import_export_type
|
||||
from hub.hub_logger import logger
|
||||
from hub.imports.results.peak_load import PeakLoad
|
||||
from hub.imports.results.simplified_radiosity_algorithm import SimplifiedRadiosityAlgorithm
|
||||
from hub.imports.results.insel_monthly_energry_balance import InselMonthlyEnergyBalance
|
||||
from hub.imports.results.insel_heatpump_energy_demand import InselHeatPumpEnergyDemand
|
||||
|
@ -59,6 +60,12 @@ class ResultFactory:
|
|||
"""
|
||||
InselMonthlyEnergyBalance(self._city, self._base_path).enrich()
|
||||
|
||||
def _peak_load(self):
|
||||
"""
|
||||
Enrich the city with peak load results
|
||||
"""
|
||||
PeakLoad(self._city).enrich()
|
||||
|
||||
def enrich(self):
|
||||
"""
|
||||
Enrich the city given to the class using the usage factory given handler
|
||||
|
|
|
@ -25,3 +25,4 @@ triangle
|
|||
psycopg2-binary
|
||||
Pillow
|
||||
pathlib
|
||||
pickle5
|
1
setup.py
1
setup.py
|
@ -87,6 +87,7 @@ setup(
|
|||
('hub/catalog_factories/greenery/ecore_greenery', glob.glob('hub/catalog_factories/greenery/ecore_greenery/*.ecore')),
|
||||
('hub/data/construction.', glob.glob('hub/data/construction/*')),
|
||||
('hub/data/customized_imports', glob.glob('hub/data/customized_imports/*.xml')),
|
||||
('data/geolocation', glob.glob('hub/data/geolocation/*.txt')),
|
||||
('hub/data/energy_systems', glob.glob('hub/data/energy_systems/*.xml')),
|
||||
('hub/data/energy_systems', glob.glob('hub/data/energy_systems/*.insel')),
|
||||
('hub/data/energy_systems', glob.glob('hub/data/energy_systems/*.xlsx')),
|
||||
|
|
Loading…
Reference in New Issue
Block a user