forked from s_ranjbar/city_retrofit
modified triangulation method
This commit is contained in:
parent
b61722db2e
commit
a258d33dc9
|
@ -12,6 +12,9 @@ from typing import List
|
|||
import numpy as np
|
||||
from trimesh import Trimesh
|
||||
import trimesh.intersections
|
||||
import trimesh.creation
|
||||
import trimesh.geometry
|
||||
from shapely.geometry.polygon import Polygon as shapley_polygon
|
||||
|
||||
from hub.city_model_structure.attributes.plane import Plane
|
||||
from hub.city_model_structure.attributes.point import Point
|
||||
|
@ -22,6 +25,7 @@ class Polygon:
|
|||
"""
|
||||
Polygon class
|
||||
"""
|
||||
# todo: review with @Guille: Points, Coordinates, Vertices, Faces
|
||||
|
||||
def __init__(self, coordinates):
|
||||
self._area = None
|
||||
|
@ -66,20 +70,6 @@ class Polygon:
|
|||
"""
|
||||
return self._coordinates
|
||||
|
||||
@staticmethod
|
||||
def _module(vector):
|
||||
x2 = vector[0] ** 2
|
||||
y2 = vector[1] ** 2
|
||||
z2 = vector[2] ** 2
|
||||
return math.sqrt(x2+y2+z2)
|
||||
|
||||
@staticmethod
|
||||
def _scalar_product(vector_0, vector_1):
|
||||
x = vector_0[0] * vector_1[0]
|
||||
y = vector_0[1] * vector_1[1]
|
||||
z = vector_0[2] * vector_1[2]
|
||||
return x+y+z
|
||||
|
||||
def contains_point(self, point):
|
||||
"""
|
||||
Determines if the given point is contained by the current polygon
|
||||
|
@ -98,9 +88,9 @@ class Polygon:
|
|||
vector_1[0] = vector_1[0] - point.coordinates[0]
|
||||
vector_1[1] = vector_1[1] - point.coordinates[1]
|
||||
vector_1[2] = vector_1[2] - point.coordinates[2]
|
||||
module = Polygon._module(vector_0) * Polygon._module(vector_1)
|
||||
module = np.linalg.norm(vector_0) * np.linalg.norm(vector_1)
|
||||
|
||||
scalar_product = Polygon._scalar_product(vector_0, vector_1)
|
||||
scalar_product = np.dot(vector_0, vector_1)
|
||||
angle = np.pi/2
|
||||
if module != 0:
|
||||
angle = abs(np.arcsin(scalar_product / module))
|
||||
|
@ -150,69 +140,17 @@ class Polygon:
|
|||
Get surface area in square meters
|
||||
:return: float
|
||||
"""
|
||||
# New method to calculate area
|
||||
if self._area is None:
|
||||
if len(self.points) < 3:
|
||||
sys.stderr.write('Warning: the area of a line or point cannot be calculated 1. Area = 0\n')
|
||||
return 0
|
||||
alpha = 0
|
||||
vec_1 = self.points[1].coordinates - self.points[0].coordinates
|
||||
for i in range(2, len(self.points)):
|
||||
vec_2 = self.points[i].coordinates - self.points[0].coordinates
|
||||
alpha += self._angle_between_vectors(vec_1, vec_2)
|
||||
if alpha == 0:
|
||||
sys.stderr.write('Warning: the area of a line or point cannot be calculated 2. Area = 0\n')
|
||||
return 0
|
||||
horizontal_points = self._points_rotated_to_horizontal
|
||||
area = 0
|
||||
for i in range(0, len(horizontal_points) - 1):
|
||||
point = horizontal_points[i]
|
||||
next_point = horizontal_points[i + 1]
|
||||
area += (next_point[1] + point[1]) / 2 * (next_point[0] - point[0])
|
||||
next_point = horizontal_points[0]
|
||||
point = horizontal_points[len(horizontal_points) - 1]
|
||||
area += (next_point[1] + point[1]) / 2 * (next_point[0] - point[0])
|
||||
self._area = abs(area)
|
||||
self._area = 0
|
||||
for triangle in self.triangles:
|
||||
ab = np.zeros(3)
|
||||
ac = np.zeros(3)
|
||||
for i in range(0, 3):
|
||||
ab[i] = triangle.coordinates[1][i] - triangle.coordinates[0][i]
|
||||
ac[i] = triangle.coordinates[2][i] - triangle.coordinates[0][i]
|
||||
self._area += np.linalg.norm(np.cross(ab, ac)) / 2
|
||||
return self._area
|
||||
|
||||
@property
|
||||
def _points_rotated_to_horizontal(self):
|
||||
"""
|
||||
polygon points rotated to horizontal
|
||||
:return: [float]
|
||||
"""
|
||||
z_vector = [0, 0, 1]
|
||||
normal_vector = self.normal
|
||||
horizontal_points = []
|
||||
x = normal_vector[0]
|
||||
y = normal_vector[1]
|
||||
|
||||
if x == 0 and y == 0:
|
||||
# Already horizontal
|
||||
for point in self.points:
|
||||
horizontal_points.append([point.coordinates[0], point.coordinates[1], 0])
|
||||
else:
|
||||
alpha = self._angle_between_vectors(normal_vector, z_vector)
|
||||
rotation_line = np.cross(normal_vector, z_vector)
|
||||
third_axis = np.cross(normal_vector, rotation_line)
|
||||
w_1 = rotation_line / np.linalg.norm(rotation_line)
|
||||
w_2 = normal_vector
|
||||
w_3 = third_axis / np.linalg.norm(third_axis)
|
||||
rotation_matrix = np.array([[1, 0, 0],
|
||||
[0, np.cos(alpha), -np.sin(alpha)],
|
||||
[0, np.sin(alpha), np.cos(alpha)]])
|
||||
base_matrix = np.array([w_1, w_2, w_3])
|
||||
rotation_base_matrix = np.matmul(base_matrix.transpose(), rotation_matrix.transpose())
|
||||
rotation_base_matrix = np.matmul(rotation_base_matrix, base_matrix)
|
||||
|
||||
if rotation_base_matrix is None:
|
||||
sys.stderr.write('Warning: rotation base matrix returned None\n')
|
||||
else:
|
||||
for point in self.points:
|
||||
new_point = np.matmul(rotation_base_matrix, point.coordinates)
|
||||
horizontal_points.append(new_point)
|
||||
return horizontal_points
|
||||
|
||||
@property
|
||||
def normal(self) -> np.ndarray:
|
||||
"""
|
||||
|
@ -275,284 +213,67 @@ class Polygon:
|
|||
return alpha
|
||||
return -alpha
|
||||
|
||||
def triangulate(self) -> List[Polygon]:
|
||||
"""
|
||||
Triangulates a polygon following the ear clipping methodology
|
||||
:return: list[triangles]
|
||||
"""
|
||||
# todo: review triangulate_polygon in
|
||||
# https://github.com/mikedh/trimesh/blob/dad11126742e140ef46ba12f8cb8643c83356467/trimesh/creation.py#L415,
|
||||
# it had a problem with a class called 'triangle', but, if solved,
|
||||
# it could be a very good substitute of this method
|
||||
# this method is very dirty and has an infinite loop solved with a counter!!
|
||||
@staticmethod
|
||||
def triangle_mesh(vertices, normal):
|
||||
min_x = 1e16
|
||||
min_y = 1e16
|
||||
min_z = 1e16
|
||||
for vertex in vertices:
|
||||
if vertex[0] < min_x:
|
||||
min_x = vertex[0]
|
||||
if vertex[1] < min_y:
|
||||
min_y = vertex[1]
|
||||
if vertex[2] < min_z:
|
||||
min_z = vertex[2]
|
||||
|
||||
new_vertices = []
|
||||
for vertex in vertices:
|
||||
vertex = [vertex[0]-min_x, vertex[1]-min_y, vertex[2]-min_z]
|
||||
new_vertices.append(vertex)
|
||||
|
||||
transformation_matrix = trimesh.geometry.plane_transform(origin=new_vertices[0], normal=normal)
|
||||
|
||||
coordinates = []
|
||||
for vertex in vertices:
|
||||
transformed_vertex = [vertex[0]-min_x, vertex[1]-min_y, vertex[2]-min_z, 1]
|
||||
transformed_vertex = np.dot(transformation_matrix, transformed_vertex)
|
||||
coordinate = [transformed_vertex[0], transformed_vertex[1]]
|
||||
coordinates.append(coordinate)
|
||||
|
||||
polygon = shapley_polygon(coordinates)
|
||||
|
||||
vertices_2d, faces = trimesh.creation.triangulate_polygon(polygon, engine='triangle')
|
||||
mesh = Trimesh(vertices=vertices, faces=faces)
|
||||
|
||||
# check orientation
|
||||
normal_sum = 0
|
||||
for i in range(0, 3):
|
||||
normal_sum += normal[i] + mesh.face_normals[0][i]
|
||||
|
||||
if abs(normal_sum) <= 1E-10:
|
||||
new_faces = []
|
||||
for face in faces:
|
||||
new_face = []
|
||||
for i in range(0, len(face)):
|
||||
new_face.append(face[len(face)-i-1])
|
||||
new_faces.append(new_face)
|
||||
mesh = Trimesh(vertices=vertices, faces=new_faces)
|
||||
|
||||
return mesh
|
||||
|
||||
@property
|
||||
def triangles(self) -> List[Polygon]:
|
||||
if self._triangles is None:
|
||||
points_list = self.points_list
|
||||
normal = self.normal
|
||||
if np.linalg.norm(normal) == 0:
|
||||
sys.stderr.write('Not able to triangulate polygon\n')
|
||||
return [self]
|
||||
# are points concave or convex?
|
||||
total_points_list, concave_points, convex_points = self._starting_lists(points_list, normal)
|
||||
|
||||
# list of ears
|
||||
ears = []
|
||||
j = 0
|
||||
while (len(concave_points) > 3 or len(convex_points) != 0) and j < 100:
|
||||
j += 1
|
||||
for i in range(0, len(concave_points)):
|
||||
ear = self._triangle(points_list, total_points_list, concave_points[i])
|
||||
rest_points = []
|
||||
for points in total_points_list:
|
||||
rest_points.append(list(self.coordinates[points]))
|
||||
if self._is_ear(ear, rest_points):
|
||||
ears.append(ear)
|
||||
point_to_remove = concave_points[i]
|
||||
previous_point_in_list, next_point_in_list = self._enveloping_points(point_to_remove,
|
||||
total_points_list)
|
||||
total_points_list.remove(point_to_remove)
|
||||
concave_points.remove(point_to_remove)
|
||||
# Was any of the adjacent points convex? -> check if changed status to concave
|
||||
for convex_point in convex_points:
|
||||
if convex_point == previous_point_in_list:
|
||||
concave_points, convex_points, end_loop = self._if_concave_change_status(normal,
|
||||
points_list,
|
||||
convex_point,
|
||||
total_points_list,
|
||||
concave_points,
|
||||
convex_points,
|
||||
previous_point_in_list)
|
||||
if end_loop:
|
||||
break
|
||||
continue
|
||||
if convex_point == next_point_in_list:
|
||||
concave_points, convex_points, end_loop = self._if_concave_change_status(normal,
|
||||
points_list,
|
||||
convex_point,
|
||||
total_points_list,
|
||||
concave_points,
|
||||
convex_points,
|
||||
next_point_in_list)
|
||||
if end_loop:
|
||||
break
|
||||
continue
|
||||
break
|
||||
if len(total_points_list) <= 3 and len(convex_points) > 0:
|
||||
sys.stderr.write('Not able to triangulate polygon\n')
|
||||
return [self]
|
||||
if j >= 100:
|
||||
sys.stderr.write('Not able to triangulate polygon\n')
|
||||
return [self]
|
||||
last_ear = self._triangle(points_list, total_points_list, concave_points[1])
|
||||
ears.append(last_ear)
|
||||
self._triangles = ears
|
||||
self._triangles = []
|
||||
_mesh = self.triangle_mesh(self.coordinates, self.normal)
|
||||
for face in _mesh.faces:
|
||||
points = []
|
||||
for vertex in face:
|
||||
points.append(self.coordinates[vertex])
|
||||
polygon = Polygon(points)
|
||||
self._triangles.append(polygon)
|
||||
return self._triangles
|
||||
|
||||
@staticmethod
|
||||
def _starting_lists(points_list, normal) -> [List[float], List[float], List[float]]:
|
||||
"""
|
||||
creates the list of vertices (points) that define the polygon (total_points_list), together with other two lists
|
||||
separating points between convex and concave
|
||||
:param points_list: points_list
|
||||
:param normal: normal
|
||||
:return: list[point], list[point], list[point]
|
||||
"""
|
||||
concave_points = []
|
||||
convex_points = []
|
||||
# lists of concave and convex points
|
||||
# case 1: first point
|
||||
point = points_list[0:3]
|
||||
previous_point = points_list[len(points_list) - 3:]
|
||||
next_point = points_list[3:6]
|
||||
index = 0
|
||||
total_points_list = [index]
|
||||
if Polygon._point_is_concave(normal, point, previous_point, next_point):
|
||||
concave_points.append(index)
|
||||
else:
|
||||
convex_points.append(index)
|
||||
# case 2: all points except first and last
|
||||
for i in range(0, int((len(points_list) - 6) / 3)):
|
||||
point = points_list[(i + 1) * 3:(i + 2) * 3]
|
||||
previous_point = points_list[i * 3:(i + 1) * 3]
|
||||
next_point = points_list[(i + 2) * 3:(i + 3) * 3]
|
||||
index = i + 1
|
||||
total_points_list.append(index)
|
||||
if Polygon._point_is_concave(normal, point, previous_point, next_point):
|
||||
concave_points.append(index)
|
||||
else:
|
||||
convex_points.append(index)
|
||||
# case 3: last point
|
||||
point = points_list[len(points_list) - 3:]
|
||||
previous_point = points_list[len(points_list) - 6:len(points_list) - 3]
|
||||
next_point = points_list[0:3]
|
||||
index = int(len(points_list) / 3) - 1
|
||||
total_points_list.append(index)
|
||||
if Polygon._point_is_concave(normal, point, previous_point, next_point):
|
||||
concave_points.append(index)
|
||||
else:
|
||||
convex_points.append(index)
|
||||
return total_points_list, concave_points, convex_points
|
||||
|
||||
@staticmethod
|
||||
def _triangle(points_list, total_points_list, point_position) -> Polygon:
|
||||
"""
|
||||
creates a triangular polygon out of three points
|
||||
:param points_list: points_list
|
||||
:param total_points_list: [point]
|
||||
:param point_position: int
|
||||
:return: polygon
|
||||
"""
|
||||
index = point_position * 3
|
||||
previous_point_index, next_point_index = Polygon._enveloping_points_indices(point_position, total_points_list)
|
||||
points = points_list[previous_point_index:previous_point_index + 3]
|
||||
points = np.append(points, points_list[index:index + 3])
|
||||
points = np.append(points, points_list[next_point_index:next_point_index + 3])
|
||||
rows = points.size // 3
|
||||
points = points.reshape(rows, 3)
|
||||
triangle = Polygon(points)
|
||||
return triangle
|
||||
|
||||
@staticmethod
|
||||
def _enveloping_points_indices(point_position, total_points_list):
|
||||
"""
|
||||
due to the fact that the lists are not circular, a method to find the previous and next points
|
||||
of an specific one is needed
|
||||
:param point_position: int
|
||||
:param total_points_list: [point]
|
||||
:return: int, int
|
||||
"""
|
||||
previous_point_index = None
|
||||
next_point_index = None
|
||||
if point_position == total_points_list[0]:
|
||||
previous_point_index = total_points_list[len(total_points_list) - 1] * 3
|
||||
next_point_index = total_points_list[1] * 3
|
||||
if point_position == total_points_list[len(total_points_list) - 1]:
|
||||
previous_point_index = total_points_list[len(total_points_list) - 2] * 3
|
||||
next_point_index = total_points_list[0] * 3
|
||||
for i in range(1, len(total_points_list) - 1):
|
||||
if point_position == total_points_list[i]:
|
||||
previous_point_index = total_points_list[i - 1] * 3
|
||||
next_point_index = total_points_list[i + 1] * 3
|
||||
return previous_point_index, next_point_index
|
||||
|
||||
@staticmethod
|
||||
def _enveloping_points(point_to_remove, total_points_list):
|
||||
"""
|
||||
due to the fact that the lists are not circular, a method to find the previous and next points
|
||||
of an specific one is needed
|
||||
:param point_to_remove: point
|
||||
:param total_points_list: [point]
|
||||
:return: point, point
|
||||
"""
|
||||
index = total_points_list.index(point_to_remove)
|
||||
if index == 0:
|
||||
previous_point_in_list = total_points_list[len(total_points_list) - 1]
|
||||
next_point_in_list = total_points_list[1]
|
||||
elif index == len(total_points_list) - 1:
|
||||
previous_point_in_list = total_points_list[len(total_points_list) - 2]
|
||||
next_point_in_list = total_points_list[0]
|
||||
else:
|
||||
previous_point_in_list = total_points_list[index - 1]
|
||||
next_point_in_list = total_points_list[index + 1]
|
||||
return previous_point_in_list, next_point_in_list
|
||||
|
||||
@staticmethod
|
||||
def _is_ear(ear, points) -> bool:
|
||||
"""
|
||||
finds whether a triangle is an ear of the polygon
|
||||
:param ear: polygon
|
||||
:param points: [point]
|
||||
:return: boolean
|
||||
"""
|
||||
area_ear = ear.area
|
||||
for point in points:
|
||||
area_points = 0
|
||||
point_is_not_vertex = True
|
||||
for i in range(0, 3):
|
||||
if abs(np.linalg.norm(point) - np.linalg.norm(ear.coordinates[i])) < 0.0001:
|
||||
point_is_not_vertex = False
|
||||
break
|
||||
if point_is_not_vertex:
|
||||
for i in range(0, 3):
|
||||
if i != 2:
|
||||
new_points = ear.coordinates[i][:]
|
||||
new_points = np.append(new_points, ear.coordinates[i + 1][:])
|
||||
new_points = np.append(new_points, point[:])
|
||||
else:
|
||||
new_points = ear.coordinates[i][:]
|
||||
new_points = np.append(new_points, point[:])
|
||||
new_points = np.append(new_points, ear.coordinates[0][:])
|
||||
rows = new_points.size // 3
|
||||
new_points = new_points.reshape(rows, 3)
|
||||
new_triangle = Polygon(new_points)
|
||||
area_points += new_triangle.area
|
||||
if abs(area_points - area_ear) < 1e-6:
|
||||
# point_inside_ear = True
|
||||
return False
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def _if_concave_change_status(normal, points_list, convex_point, total_points_list,
|
||||
concave_points, convex_points, point_in_list) -> [List[float], List[float], bool]:
|
||||
"""
|
||||
checks whether an convex specific point change its status to concave after removing one ear in the polygon
|
||||
returning the new convex and concave points lists together with a flag advising that the list of total points
|
||||
already 3 and, therefore, the triangulation must be finished.
|
||||
:param normal: normal
|
||||
:param points_list: points_list
|
||||
:param convex_point: int
|
||||
:param total_points_list: [point]
|
||||
:param concave_points: [point]
|
||||
:param convex_points: [point]
|
||||
:param point_in_list: int
|
||||
:return: list[points], list[points], boolean
|
||||
"""
|
||||
end_loop = False
|
||||
point = points_list[point_in_list * 3:(point_in_list + 1) * 3]
|
||||
pointer = total_points_list.index(point_in_list) - 1
|
||||
if pointer < 0:
|
||||
pointer = len(total_points_list) - 1
|
||||
previous_point = points_list[total_points_list[pointer] * 3:total_points_list[pointer] * 3 + 3]
|
||||
pointer = total_points_list.index(point_in_list) + 1
|
||||
if pointer >= len(total_points_list):
|
||||
pointer = 0
|
||||
next_point = points_list[total_points_list[pointer] * 3:total_points_list[pointer] * 3 + 3]
|
||||
if Polygon._point_is_concave(normal, point, previous_point, next_point):
|
||||
if concave_points[0] > convex_point:
|
||||
concave_points.insert(0, convex_point)
|
||||
elif concave_points[len(concave_points) - 1] < convex_point:
|
||||
concave_points.append(convex_point)
|
||||
else:
|
||||
for point_index in range(0, len(concave_points) - 1):
|
||||
if concave_points[point_index] < convex_point < concave_points[point_index + 1]:
|
||||
concave_points.insert(point_index + 1, convex_point)
|
||||
convex_points.remove(convex_point)
|
||||
end_loop = True
|
||||
return concave_points, convex_points, end_loop
|
||||
|
||||
@staticmethod
|
||||
def _point_is_concave(normal, point, previous_point, next_point) -> bool:
|
||||
"""
|
||||
returns whether a point is concave
|
||||
:param normal: normal
|
||||
:param point: point
|
||||
:param previous_point: point
|
||||
:param next_point: point
|
||||
:return: boolean
|
||||
"""
|
||||
is_concave = False
|
||||
accepted_error = 0.1
|
||||
points = np.append(previous_point, point)
|
||||
points = np.append(points, next_point)
|
||||
rows = points.size // 3
|
||||
points = points.reshape(rows, 3)
|
||||
triangle = Polygon(points)
|
||||
error_sum = 0
|
||||
for i in range(0, len(normal)):
|
||||
error_sum += triangle.normal[i] - normal[i]
|
||||
if np.abs(error_sum) < accepted_error:
|
||||
is_concave = True
|
||||
return is_concave
|
||||
|
||||
@staticmethod
|
||||
def _angle_between_vectors(vec_1, vec_2):
|
||||
"""
|
||||
|
@ -652,12 +373,12 @@ class Polygon:
|
|||
@property
|
||||
def vertices(self) -> np.ndarray:
|
||||
"""
|
||||
Get polyhedron vertices
|
||||
Get polygon vertices
|
||||
:return: np.ndarray(int)
|
||||
"""
|
||||
if self._vertices is None:
|
||||
vertices, self._vertices = [], []
|
||||
_ = [vertices.extend(s.coordinates) for s in self.triangulate()]
|
||||
_ = [vertices.extend(s.coordinates) for s in self.triangles]
|
||||
for vertex_1 in vertices:
|
||||
found = False
|
||||
for vertex_2 in self._vertices:
|
||||
|
@ -677,17 +398,17 @@ class Polygon:
|
|||
@property
|
||||
def faces(self) -> List[List[int]]:
|
||||
"""
|
||||
Get polyhedron triangular faces
|
||||
Get polygon triangular faces
|
||||
:return: [face]
|
||||
"""
|
||||
if self._faces is None:
|
||||
self._faces = []
|
||||
|
||||
for polygon in self.triangulate():
|
||||
for polygon in self.triangles:
|
||||
face = []
|
||||
points = polygon.coordinates
|
||||
if len(points) != 3:
|
||||
sub_polygons = polygon.triangulate()
|
||||
sub_polygons = polygon.triangles
|
||||
# todo: I modified this! To be checked @Guille
|
||||
if len(sub_polygons) >= 1:
|
||||
for sub_polygon in sub_polygons:
|
||||
|
|
|
@ -39,59 +39,12 @@ class GeometryHelper:
|
|||
max_distance = ConfigurationHelper().max_location_distance_for_shared_walls
|
||||
return GeometryHelper.distance_between_points(location1, location2) < max_distance
|
||||
|
||||
def almost_same_area(self, area_1, area_2):
|
||||
"""
|
||||
Compare two areas and decides if they are almost equal (absolute error under delta)
|
||||
:param area_1
|
||||
:param area_2
|
||||
:return: Boolean
|
||||
"""
|
||||
if area_1 == 0 or area_2 == 0:
|
||||
return False
|
||||
delta = math.fabs(area_1 - area_2)
|
||||
return delta <= self._area_delta
|
||||
|
||||
def is_almost_same_surface(self, surface_1, surface_2):
|
||||
"""
|
||||
Compare two surfaces and decides if they are almost equal (quadratic error under delta)
|
||||
:param surface_1: Surface
|
||||
:param surface_2: Surface
|
||||
:return: Boolean
|
||||
"""
|
||||
|
||||
# delta is grads an need to be converted into radians
|
||||
delta = np.rad2deg(self._delta)
|
||||
difference = (surface_1.inclination - surface_2.inclination) % math.pi
|
||||
if abs(difference) > delta:
|
||||
return False
|
||||
# s1 and s2 are at least almost parallel surfaces
|
||||
# calculate distance point to plane using all the vertex
|
||||
# select surface1 value for the point (X,Y,Z) where two of the values are 0
|
||||
minimum_distance = self._delta + 1
|
||||
parametric = surface_2.polygon.get_parametric()
|
||||
normal_2 = surface_2.normal
|
||||
for point in surface_1.points:
|
||||
distance = abs(
|
||||
(point[0] * parametric[0]) + (point[1] * parametric[1]) + (point[2] * parametric[2]) + parametric[3])
|
||||
normal_module = math.sqrt(pow(normal_2[0], 2) + pow(normal_2[1], 2) + pow(normal_2[2], 2))
|
||||
|
||||
if normal_module == 0:
|
||||
continue
|
||||
distance = distance / normal_module
|
||||
if distance < minimum_distance:
|
||||
minimum_distance = distance
|
||||
if minimum_distance <= self._delta:
|
||||
break
|
||||
|
||||
if minimum_distance > self._delta or surface_1.intersect(surface_2) is None:
|
||||
return False
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def segment_list_to_trimesh(lines) -> Trimesh:
|
||||
"""
|
||||
Transform a list of segments into a Trimesh
|
||||
"""
|
||||
# todo: trimesh has a method for this
|
||||
line_points = [lines[0][0], lines[0][1]]
|
||||
lines.remove(lines[0])
|
||||
while len(lines) > 1:
|
||||
|
@ -106,7 +59,7 @@ class GeometryHelper:
|
|||
line_points.append(line[0])
|
||||
lines.pop(i - 1)
|
||||
break
|
||||
polyhedron = Polyhedron(Polygon(line_points).triangulate())
|
||||
polyhedron = Polyhedron(Polygon(line_points).triangles)
|
||||
trimesh = Trimesh(polyhedron.vertices, polyhedron.faces)
|
||||
return trimesh
|
||||
|
||||
|
|
|
@ -9,7 +9,6 @@ import geopandas
|
|||
from hub.city_model_structure.city import City
|
||||
from hub.imports.geometry.citygml import CityGml
|
||||
from hub.imports.geometry.obj import Obj
|
||||
from hub.imports.geometry.osm_subway import OsmSubway
|
||||
from hub.imports.geometry.rhino import Rhino
|
||||
from hub.imports.geometry.gpandas import GPandas
|
||||
from hub.imports.geometry.geojson import Geojson
|
||||
|
@ -83,14 +82,6 @@ class GeometryFactory:
|
|||
self._function_field,
|
||||
self._function_to_hub).city
|
||||
|
||||
@property
|
||||
def _osm_subway(self) -> City:
|
||||
"""
|
||||
Enrich the city by using OpenStreetMap information as data source
|
||||
:return: City
|
||||
"""
|
||||
return OsmSubway(self._path).city
|
||||
|
||||
@property
|
||||
def _rhino(self) -> City:
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue
Block a user