Merge remote-tracking branch 'origin/systems_catalog_improvement' into systems_catalog_improvement

# Conflicts:
#	hub/catalog_factories/data_models/energy_systems/electrical_storage_system.py
#	hub/catalog_factories/data_models/energy_systems/energy_storage_system.py
#	hub/catalog_factories/data_models/energy_systems/thermal_storage_system.py
This commit is contained in:
Pilar Monsalvete 2023-08-29 12:25:04 -04:00
commit b1d42ee00b
7 changed files with 137 additions and 121 deletions

View File

@ -56,3 +56,5 @@ class Archetype:
} }
} }
return content return content

View File

@ -69,11 +69,4 @@ class Content:
return content return content
def __str__(self):
"""Print content"""
_archetypes = []
for _archetype in self.archetypes:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return str(content)

View File

@ -14,8 +14,9 @@ class PerformanceCurves:
Parameter function class Parameter function class
""" """
def __init__(self, curve_type, parameters, coefficients): def __init__(self, curve_type, dependant_variable, parameters, coefficients):
self._curve_type = curve_type self._curve_type = curve_type
self._dependant_variable = dependant_variable
self._parameters = parameters self._parameters = parameters
self._coefficients = coefficients self._coefficients = coefficients
@ -35,11 +36,12 @@ class PerformanceCurves:
return self._curve_type return self._curve_type
@property @property
def function(self): def dependant_variable(self):
""" """
y (e.g. COP in COP = a*source temperature**2... ) y (e.g. COP in COP = a*source temperature**2 + b*source temperature + c*source temperature*supply temperature +
d*supply temperature + e*supply temperature**2 + f)
""" """
return self._function return self._dependant_variable
@property @property
def parameters(self): def parameters(self):
@ -62,7 +64,8 @@ class PerformanceCurves:
"""Class content to dictionary""" """Class content to dictionary"""
content = {'Parameter Function': { content = {'Parameter Function': {
'curve type': self.curve_type, 'curve type': self.curve_type,
'parameters': self.parameters, 'dependant variable': self.dependant_variable,
'parameter(s)': self.parameters,
'coefficients': self.coefficients, 'coefficients': self.coefficients,
} }
} }

View File

@ -36,7 +36,7 @@ class System:
self._emission_system = emission_system self._emission_system = emission_system
self._generation_systems = generation_systems self._generation_systems = generation_systems
self._energy_storage_systems = energy_storage_systems self._energy_storage_systems = energy_storage_systems
self._configuration = configuration # self._configuration = configuration
@property @property
def lod(self): def lod(self):
@ -79,7 +79,7 @@ class System:
return self._generation_systems return self._generation_systems
@property @property
def distribution_system(self) -> Union[None, DistributionSystem]: def distribution_system(self) -> Union[None, List[DistributionSystem]]:
""" """
Get distribution system Get distribution system
:return: DistributionSystem :return: DistributionSystem
@ -87,7 +87,7 @@ class System:
return self._distribution_system return self._distribution_system
@property @property
def emission_system(self) -> Union[None, EmissionSystem]: def emission_system(self) -> Union[None, List[EmissionSystem]]:
""" """
Get emission system Get emission system
:return: EmissionSystem :return: EmissionSystem
@ -107,12 +107,10 @@ class System:
_generation_systems = [] _generation_systems = []
for _generation in self.generation_systems: for _generation in self.generation_systems:
_generation_systems.append(_generation.to_dictionary()) _generation_systems.append(_generation.to_dictionary())
_distribution_system = None _distribution_system = [_distribution.to_dictionary() for _distribution in
if self.distribution_system is not None: self.distribution_system] if self.distribution_system is not None else None
_distribution_system = self.distribution_system.to_dictionary() _emission_system = [_emission.to_dictionary() for _emission in
_emission_system = None self.emission_system] if self.emission_system is not None else None
if self.emission_system is not None:
_emission_system = self.emission_system.to_dictionary()
_storage_system = [_storage.to_dictionary() for _storage in _storage_system = [_storage.to_dictionary() for _storage in
self.energy_storage_system] if self.energy_storage_system is not None else None self.energy_storage_system] if self.energy_storage_system is not None else None
@ -120,10 +118,10 @@ class System:
'name': self.name, 'name': self.name,
'level of detail': self.lod, 'level of detail': self.lod,
'demand types': self.demand_types, 'demand types': self.demand_types,
'Generation system(s)': _generation_systems, 'generation system(s)': _generation_systems,
'distribution system': _distribution_system, 'distribution system(s)': _distribution_system,
'emission system': _emission_system, 'emission system(s)': _emission_system,
'energy storage system': _storage_system, 'energy storage system(s)': _storage_system,
} }
} }
return content return content

View File

@ -6,14 +6,13 @@ Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
""" """
import xmltodict import xmltodict
from hub.catalog_factories.catalog import Catalog from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.system import System from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.construction.material import Material from hub.catalog_factories.data_models.construction.material import Material
@ -40,7 +39,6 @@ class NorthAmericaEnergySystemCatalog(Catalog):
None, None,
self._storage_components) self._storage_components)
print(self._content) print(self._content)
def _load_generation_components(self): def _load_generation_components(self):
generation_components = [] generation_components = []
boilers = self._archetypes['EnergySystemCatalog']['energy_generation_components']['boilers'] boilers = self._archetypes['EnergySystemCatalog']['energy_generation_components']['boilers']
@ -55,7 +53,8 @@ class NorthAmericaEnergySystemCatalog(Catalog):
system_type = 'boiler' system_type = 'boiler'
boiler_fuel_type = boiler['@fuel'] boiler_fuel_type = boiler['@fuel']
boiler_nominal_thermal_output = float(boiler['@installedThermalPower']) boiler_nominal_thermal_output = float(boiler['@installedThermalPower'])
boiler_maximum_heat_output = float(boiler['@modulationRange']) boiler_maximum_heat_output = float(boiler['@maximumHeatOutput'])
boiler_minimum_heat_output = float(boiler['@minimumHeatOutput'])
boiler_heat_efficiency = float(boiler['@nominalEfficiency']) boiler_heat_efficiency = float(boiler['@nominalEfficiency'])
boiler_component = GenerationSystem(boiler_id, boiler_component = GenerationSystem(boiler_id,
@ -65,8 +64,8 @@ class NorthAmericaEnergySystemCatalog(Catalog):
system_type, system_type,
boiler_fuel_type, boiler_fuel_type,
boiler_nominal_thermal_output, boiler_nominal_thermal_output,
None, boiler_maximum_heat_output,
None, boiler_minimum_heat_output,
None, None,
None, None,
boiler_heat_efficiency, boiler_heat_efficiency,
@ -99,18 +98,20 @@ class NorthAmericaEnergySystemCatalog(Catalog):
system_type = 'heat pump' system_type = 'heat pump'
heat_pump_fuel_type = heat_pump['@fuel'] heat_pump_fuel_type = heat_pump['@fuel']
heat_pump_nominal_thermal_output = float(heat_pump['@installedThermalPower']) heat_pump_nominal_thermal_output = float(heat_pump['@installedThermalPower'])
heat_pump_modulation_range = float(heat_pump['@modulationRange']) heat_pump_maximum_heat_output = float(heat_pump['@maximumHeatOutput'])
heat_pump_source_type = heat_pump['@heatSource'] heat_pump_minimum_heat_output = float(heat_pump['@minimumHeatOutput'])
heat_pump_source_medium = heat_pump['@heatSource']
heat_pump_supply_medium = heat_pump['@supply_medium'] heat_pump_supply_medium = heat_pump['@supply_medium']
heat_pump_nominal_cop = float(heat_pump['@nominalCOP']) heat_pump_nominal_cop = float(heat_pump['@nominalCOP'])
heat_pump_maximum_heating_temperature = float(heat_pump['@maxHeatingSupTemperature']) heat_pump_maximum_heat_supply_temperature = float(heat_pump['@maxHeatingSupTemperature'])
heat_pump_minimum_heating_temperature = float(heat_pump['@minHeatingSupTemperature']) heat_pump_minimum_heat_supply_temperature = float(heat_pump['@minHeatingSupTemperature'])
heat_pump_maximum_cooling_temperature = float(heat_pump['@maxCoolingSupTemperature']) heat_pump_maximum_cooling_supply_temperature = float(heat_pump['@maxCoolingSupTemperature'])
heat_pump_minimum_cooling_temperature = float(heat_pump['@minCoolingSupTemperature']) heat_pump_minimum_cooling_supply_temperature = float(heat_pump['@minCoolingSupTemperature'])
cop_curve_type = heat_pump['performance_curve']['@curve_type'] cop_curve_type = heat_pump['performance_curve']['@curve_type']
dependant_variable = heat_pump['performance_curve']['dependant_variable']
parameters = heat_pump['performance_curve']['parameters'] parameters = heat_pump['performance_curve']['parameters']
coefficients = list(heat_pump['performance_curve']['coefficients'].values()) coefficients = list(heat_pump['performance_curve']['coefficients'].values())
cop_curve = PerformanceCurves(cop_curve_type, parameters, coefficients) cop_curve = PerformanceCurves(cop_curve_type, dependant_variable, parameters, coefficients)
heat_pump_component = GenerationSystem(heat_pump_id, heat_pump_component = GenerationSystem(heat_pump_id,
heat_pump_name, heat_pump_name,
@ -119,9 +120,9 @@ class NorthAmericaEnergySystemCatalog(Catalog):
system_type, system_type,
heat_pump_fuel_type, heat_pump_fuel_type,
heat_pump_nominal_thermal_output, heat_pump_nominal_thermal_output,
None, heat_pump_maximum_heat_output,
None, heat_pump_minimum_heat_output,
heat_pump_source_type, heat_pump_source_medium,
heat_pump_supply_medium, heat_pump_supply_medium,
heat_pump_nominal_cop, heat_pump_nominal_cop,
None, None,
@ -132,10 +133,10 @@ class NorthAmericaEnergySystemCatalog(Catalog):
None, None,
None, None,
None, None,
heat_pump_maximum_heating_temperature, heat_pump_maximum_heat_supply_temperature,
heat_pump_minimum_heating_temperature, heat_pump_minimum_heat_supply_temperature,
heat_pump_maximum_cooling_temperature, heat_pump_maximum_cooling_supply_temperature,
heat_pump_minimum_cooling_temperature, heat_pump_minimum_cooling_supply_temperature,
None, None,
None, None,
cop_curve, cop_curve,
@ -288,31 +289,27 @@ class NorthAmericaEnergySystemCatalog(Catalog):
name = tes['@name'] name = tes['@name']
model_name = tes['@modelName'] model_name = tes['@modelName']
manufacturer = tes['@manufacturer'] manufacturer = tes['@manufacturer']
volume = tes['@volume'] storage_type = 'sensible'
height = tes['@height'] volume = tes['physical_characteristics']['@volume']
height = tes['physical_characteristics']['@height']
maximum_operating_temperature = tes['@maxTemp'] maximum_operating_temperature = tes['@maxTemp']
materials = self._load_materials() materials = self._load_materials()
insulation_material_name = tes['@insulationMaterial'] insulation_material_id = tes['insulation']['@material_id']
insulation_material = self._search_material(materials, insulation_material_name) insulation_material = self._search_material(materials, insulation_material_id)
material_name = tes['@tankMaterial'] material_id = tes['physical_characteristics']['@material_id']
tank_material = self._search_material(materials, material_name) tank_material = self._search_material(materials, material_id)
thickness = float(tes['@insulationThickness']) / 100 # from cm to m thickness = float(tes['insulation']['@insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness) insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(tes['@tankThickness']) / 100 # from cm to m thickness = float(tes['physical_characteristics']['@tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'insulation', tank_material, thickness) tank_layer = Layer(None, 'tank', tank_material, thickness)
# the convention is from outside to inside # the convention is from outside to inside
layers = [insulation_layer, tank_layer] layers = [insulation_layer, tank_layer]
storage_component = EnergyStorageSystem(storage_id, storage_component = ThermalStorageSystem(storage_id,
name, name,
model_name, model_name,
manufacturer, manufacturer,
'thermal', storage_type,
volume, volume,
None,
None,
None,
None,
None,
height, height,
layers, layers,
maximum_operating_temperature) maximum_operating_temperature)
@ -321,30 +318,27 @@ class NorthAmericaEnergySystemCatalog(Catalog):
for template in template_storages: for template in template_storages:
storage_id = template['@storage_id'] storage_id = template['@storage_id']
name = template['@name'] name = template['@name']
storage_type = 'sensible'
maximum_temperature = template['@maxTemp'] maximum_temperature = template['@maxTemp']
height = template['physical_characteristics']['@height']
materials = self._load_materials() materials = self._load_materials()
insulation_material_name = template['@insulationMaterial'] insulation_material_id = template['insulation']['@material_id']
insulation_material = self._search_material(materials, insulation_material_name) insulation_material = self._search_material(materials, insulation_material_id)
material_name = template['@tankMaterial'] material_id = template['physical_characteristics']['@material_id']
tank_material = self._search_material(materials, material_name) tank_material = self._search_material(materials, material_id)
thickness = float(template['@insulationThickness']) / 100 # from cm to m thickness = float(template['insulation']['@insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness) insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(template['@tankThickness']) / 100 # from cm to m thickness = float(template['physical_characteristics']['@tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'insulation', tank_material, thickness) tank_layer = Layer(None, 'tank', tank_material, thickness)
# the convention is from outside to inside # the convention is from outside to inside
layers = [insulation_layer, tank_layer] layers = [insulation_layer, tank_layer]
storage_component = EnergyStorageSystem(storage_id, storage_component = ThermalStorageSystem(storage_id,
name, name,
None, None,
None, None,
'thermal', storage_type,
None,
None,
None,
None,
None,
None,
None, None,
height,
layers, layers,
maximum_temperature) maximum_temperature)
storage_components.append(storage_component) storage_components.append(storage_component)
@ -393,9 +387,10 @@ class NorthAmericaEnergySystemCatalog(Catalog):
materials = [] materials = []
_materials = self._archetypes['EnergySystemCatalog']['materials']['material'] _materials = self._archetypes['EnergySystemCatalog']['materials']['material']
for _material in _materials: for _material in _materials:
material_id = _material['@material_id']
name = _material['@name'] name = _material['@name']
thermal_conductivity = _material['@thermalConductivity'] thermal_conductivity = _material['@thermalConductivity']
material = Material(None, material = Material(material_id,
name, name,
None, None,
None, None,
@ -409,15 +404,15 @@ class NorthAmericaEnergySystemCatalog(Catalog):
return materials return materials
@staticmethod @staticmethod
def _search_material(materials, material_name): def _search_material(materials, material_id):
_material = None _material = None
for material in materials: for material in materials:
if material.name == material_name: if int(material.id) == int(material_id):
_material = material _material = material
return _material return _material
if _material is None: if _material is None:
raise ValueError(f'Material not found in catalog [{material_name}]') raise ValueError(f'Material with the id = [{material_id}] not found in catalog ')
@staticmethod @staticmethod
def _search_generation_equipment(generation_systems, generation_id): def _search_generation_equipment(generation_systems, generation_id):

View File

@ -5,37 +5,37 @@
<media media_id="1" media_name="Water" density="981.0" heatCapacity="4180.0" evaporationTemperature="100.0"/> <media media_id="1" media_name="Water" density="981.0" heatCapacity="4180.0" evaporationTemperature="100.0"/>
</medias> </medias>
<energy_generation_components> <energy_generation_components>
<boilers generation_id="1" name="Natural-Gas Boiler" modelName="ALP080B" manufacturer="Alpine" installedThermalPower="21.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="1" name="Natural-Gas Boiler" modelName="ALP080B" manufacturer="Alpine" installedThermalPower="21.0" minimumHeatOutput="4.7" maximumHeatOutput="23.5" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="2" name="Natural-Gas Boiler" modelName="ALP105B" manufacturer="Alpine" installedThermalPower="28.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="2" name="Natural-Gas Boiler" modelName="ALP105B" manufacturer="Alpine" installedThermalPower="28.0" minimumHeatOutput="6.15" maximumHeatOutput="30.8" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="3" name="Natural-Gas Boiler" modelName="ALP150B" manufacturer="Alpine" installedThermalPower="40.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="3" name="Natural-Gas Boiler" modelName="ALP150B" manufacturer="Alpine" installedThermalPower="40.0" minimumHeatOutput="8.8" maximumHeatOutput="44" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="4" name="Natural-Gas Boiler" modelName="ALP210B" manufacturer="Alpine" installedThermalPower="57.0" modulationRange="0.87" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="4" name="Natural-Gas Boiler" modelName="ALP210B" manufacturer="Alpine" installedThermalPower="57.0" minimumHeatOutput="12.3" maximumHeatOutput="61.5" modulationRange="0.87" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="5" name="Natural-Gas Boiler" modelName="ALTAC-136" manufacturer="Alta" installedThermalPower="33.0" modulationRange="0.95" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="5" name="Natural-Gas Boiler" modelName="ALTAC-136" manufacturer="Alta" installedThermalPower="33.0" minimumHeatOutput="4.0" maximumHeatOutput="35.2" modulationRange="0.95" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="6" name="Natural-Gas Boiler" modelName="ALTA-120" manufacturer="Alta" installedThermalPower="33.0" modulationRange="0.95" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="6" name="Natural-Gas Boiler" modelName="ALTA-120" manufacturer="Alta" installedThermalPower="33.0" minimumHeatOutput="4.0" maximumHeatOutput="35.2" modulationRange="0.95" nominalEfficiency="0.95" combi="false" fuel="natural gas"/>
<boilers generation_id="7" name="Natural-Gas Boiler" modelName="ASPN-085" manufacturer="Aspen" installedThermalPower="23.15" modulationRange="0.97" nominalEfficiency="0.96" fuel="natural gas"/> <boilers generation_id="7" name="Natural-Gas Boiler" modelName="ASPN-085" manufacturer="Aspen" installedThermalPower="23.15" minimumHeatOutput="2.5" maximumHeatOutput="25.0" modulationRange="0.97" nominalEfficiency="0.96" fuel="natural gas"/>
<boilers generation_id="8" name="Natural-Gas Boiler" modelName="ASPN-110" manufacturer="Aspen" installedThermalPower="30.19" modulationRange="0.96" nominalEfficiency="0.96" fuel="natural gas"/> <boilers generation_id="8" name="Natural-Gas Boiler" modelName="ASPN-110" manufacturer="Aspen" installedThermalPower="30.19" minimumHeatOutput="3.2" maximumHeatOutput="32.0" modulationRange="0.96" nominalEfficiency="0.96" fuel="natural gas"/>
<boilers generation_id="9" name="Natural-Gas Boiler" modelName="ASPNC-155" manufacturer="Aspen" installedThermalPower="42.5" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="9" name="Natural-Gas Boiler" modelName="ASPNC-155" manufacturer="Aspen" installedThermalPower="42.5" minimumHeatOutput="4.5" maximumHeatOutput="45.0" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="10" name="Natural-Gas Boiler" modelName="K2WTC-135B" manufacturer="K2" installedThermalPower="32.8" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="10" name="Natural-Gas Boiler" modelName="K2WTC-135B" manufacturer="K2" installedThermalPower="32.8" minimumHeatOutput="3.5" maximumHeatOutput="35.0" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="11" name="Natural-Gas Boiler" modelName="K2WTC-180B" manufacturer="K2" installedThermalPower="49.5" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/> <boilers generation_id="11" name="Natural-Gas Boiler" modelName="K2WTC-180B" manufacturer="K2" installedThermalPower="49.5" minimumHeatOutput="5.3" maximumHeatOutput="53.0" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<photovoltaicModules generation_id="12" name="Photovoltaic Module" modelName="445MS" manufacturer="Canadian Solar" nominalPower="334.0" nominalEfficiency="0.201" nominalRadiation="800.0" STCRadiation="1000.0" nominalCellTemperature="41.0" STCCellTemperature="26.0" nominalAmbientTemperature="20.0" STCMaxPower="445.0" CellTemperatureCoefficient="-0.0034" height="1.048" width="2.01"/> <photovoltaicModules generation_id="12" name="Photovoltaic Module" modelName="445MS" manufacturer="Canadian Solar" nominalPower="334.0" nominalEfficiency="0.201" nominalRadiation="800.0" STCRadiation="1000.0" nominalCellTemperature="41.0" STCCellTemperature="26.0" nominalAmbientTemperature="20.0" STCMaxPower="445.0" CellTemperatureCoefficient="-0.0034" height="1.048" width="2.01"/>
<heatPumps generation_id="13" name="Air-to-Water Heat Pump" modelName="CMAA 012" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="51.7" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.32" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water"> <heatPumps generation_id="13" name="Air-to-Water Heat Pump" modelName="CMAA 012" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="51.7" minimumHeatOutput="0" maximumHeatOutput="51.7" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.32" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<performance_curve curve_type="second degree multivariable function"> <performance_curve curve_type="second degree multivariable function">
<parameters>COP</parameters> <dependant_variable>COP</dependant_variable>
<parameters>source_temperature</parameters> <parameters>source_temperature</parameters>
<parameters>supply_temperature</parameters> <parameters>supply_temperature</parameters>
<coefficients a="9.5E-4" b="0.177" c="-0.00242" d="-0.155" e="9.3E-4" f="8.044"/> <coefficients a="9.5E-4" b="0.177" c="-0.00242" d="-0.155" e="9.3E-4" f="8.044"/>
</performance_curve> </performance_curve>
</heatPumps> </heatPumps>
<heatPumps generation_id="14" name="Air-to-Water Heat Pump" modelName="CMAA 70" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="279.3" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.07" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water"> <heatPumps generation_id="14" name="Air-to-Water Heat Pump" modelName="CMAA 70" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="279.3" minimumHeatOutput="0" maximumHeatOutput="279.3" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.07" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<performance_curve curve_type="second degree multivariable function"> <performance_curve curve_type="second degree multivariable function">
<parameters>COP</parameters> <dependant_variable>COP</dependant_variable>
<parameters>source_temperature</parameters> <parameters>source_temperature</parameters>
<parameters>supply_temperature</parameters> <parameters>supply_temperature</parameters>
<coefficients a="0.0011" b="0.207" c="-0.00292" d="-0.187" e="0.00121" f="8.95"/> <coefficients a="0.0011" b="0.207" c="-0.00292" d="-0.187" e="0.00121" f="8.95"/>
</performance_curve> </performance_curve>
</heatPumps> </heatPumps>
<heatPumps generation_id="15" name="Air-to-Water Heat Pump" modelName="CMAA 140" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="279.3" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.46" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water"> <heatPumps generation_id="15" name="Air-to-Water Heat Pump" modelName="CMAA 140" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="557" minimumHeatOutput="0" maximumHeatOutput="557" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.46" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<performance_curve curve_type="second degree multivariable function"> <performance_curve curve_type="second degree multivariable function">
<parameters>COP</parameters> <dependant_variable>COP</dependant_variable>
<parameters>source_temperature</parameters> <parameters>source_temperature</parameters>
<parameters>supply_temperature</parameters> <parameters>supply_temperature</parameters>
<coefficients a="0.00109" b="0.209" c="-0.00291" d="-0.172" e="0.00102" f="8.95"/> <coefficients a="0.00109" b="0.209" c="-0.00291" d="-0.172" e="0.00102" f="8.95"/>
@ -55,13 +55,36 @@
<manufacturers manufacturer_id="6" name="Canadian Solar" country="Canada" product="Photovoltaic Module"/> <manufacturers manufacturer_id="6" name="Canadian Solar" country="Canada" product="Photovoltaic Module"/>
</energy_generation_components> </energy_generation_components>
<energy_storage_components> <energy_storage_components>
<thermalStorages storage_id="1" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/> <thermalStorages storage_id="1" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" maxTemp="95.0">
<thermalStorages storage_id="2" name="Hot Water Storage Tank" modelName="HF 300" manufacturer="reflex" volume="0.6" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.3" tankMaterial="Steel"/> <insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<thermalStorages storage_id="3" name="Hot Water Storage Tank" modelName="HF 500" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/> <physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.5"/>
<thermalStorages storage_id="4" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/> <medium media_id="1" usesMedium="Water"/>
<thermalStorages storage_id="5" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/> </thermalStorages>
<templateStorages storage_id="6" name="template Hot Water Storage Tank" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" tankMaterial="Steel"/> <thermalStorages storage_id="2" name="Hot Water Storage Tank" modelName="HF 300" manufacturer="reflex" maxTemp="95.0">
<powerStorages/> <insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.6"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<thermalStorages storage_id="3" name="Hot Water Storage Tank" modelName="HF 500" manufacturer="reflex" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.5"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<thermalStorages storage_id="4" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.5"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<thermalStorages storage_id="5" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.5"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<templateStorages storage_id="6" name="template Hot Water Storage Tank" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel"/>
<medium media_id="1" usesMedium="Water"/>
</templateStorages>
<manufacturers manufacturer_id="1" name="reflex" product="Storage Tank"/> <manufacturers manufacturer_id="1" name="reflex" product="Storage Tank"/>
</energy_storage_components> </energy_storage_components>
<materials> <materials>

View File

@ -38,5 +38,7 @@ class TestSystemsCatalog(TestCase):
def test_north_america_systems_catalog(self): def test_north_america_systems_catalog(self):
catalog = EnergySystemsCatalogFactory('north_america').catalog catalog = EnergySystemsCatalogFactory('north_america').catalog
def test_montreal_catalog(self):
catalog = EnergySystemsCatalogFactory('montreal_custom').catalog
# def test_montreal_catalog(self):
# catalog = EnergySystemsCatalogFactory('montreal_custom').catalog