""" Schedules retrieve the specific usage schedules module for the given standard SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2020 Project Author Guille Gutierrez guillermo.gutierrezmorote@concordia.ca contributors Pilar Monsalvete pilar_monsalvete@yahoo.es """ import pandas as pd from imports.occupancy_feeders.helpers.schedules_helper import SchedulesHelper class ComnetSchedules: def __init__(self, city, base_path): self._city = city self._comnet_schedules_path = base_path / 'comnet_archetypes.xlsx' xls = pd.ExcelFile(self._comnet_schedules_path) # todo: review for more than one usage_zones per building for building in city.buildings: schedules = dict() usage_schedules = pd.read_excel(xls, sheet_name=SchedulesHelper.comnet_pluto_schedules_function(building.function) , skiprows=[0, 1, 2, 3], nrows=39, usecols="A:AA") # todo: should we save the data type? How? number_of_schedule_types = 13 schedules_per_schedule_type = 3 day_types = dict({'week_day': 0, 'saturday': 1, 'sunday': 2}) for schedule_types in range(0, number_of_schedule_types): data = pd.DataFrame() columns_names = [] name = '' for schedule_day in range(0, schedules_per_schedule_type): row_cells = usage_schedules.iloc[schedules_per_schedule_type*schedule_types + schedule_day] if schedule_day == day_types['week_day']: name = row_cells[0] columns_names.append(row_cells[2]) data1 = row_cells[schedules_per_schedule_type:] data = pd.concat([data, data1], axis=1) data.columns = columns_names schedules[name] = data building.usage_zones[0].schedules = schedules