""" Geometry helper SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2022 Concordia CERC group Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca """ import math from pathlib import Path from typing import Dict from PIL import Image from trimesh import Trimesh from trimesh import intersections import numpy as np from hub.city_model_structure.attributes.polygon import Polygon from hub.city_model_structure.attributes.polyhedron import Polyhedron from hub.helpers.location import Location class MapPoint: """ Map point class """ def __init__(self, x, y): self._x = int(x) self._y = int(y) @property def x(self): """ Get X Coordinate """ return self._x @property def y(self): """ Get Y Coordinate """ return self._y def __str__(self): return f'({self.x}, {self.y})' def __len__(self): return 1 def __getitem__(self, index): if index == 0: return self._x if index == 1: return self._y raise IndexError('Index error') class GeometryHelper: """ Geometry helper class """ # todo: complete dictionary srs_transformations = { 'urn:adv:crs:ETRS89_UTM32*DE_DHHN92_NH': 'epsg:25832' } @staticmethod def factor(): """ Set minimap resolution :return: None """ return 0.5 def __init__(self, delta=0, area_delta=0): self._delta = delta self._area_delta = area_delta @staticmethod def coordinate_to_map_point(coordinate, city): """ Transform a real world coordinate to a minimap one :param coordinate: real world coordinate :param city: current city :return: None """ factor = GeometryHelper.factor() return MapPoint( ((coordinate[0] - city.lower_corner[0]) * factor), ((coordinate[1] - city.lower_corner[1]) * factor) ) @staticmethod def city_mapping(city, building_names=None, plot=False) -> Dict: """ :param city: city to be mapped :param building_names: list of building names to be mapped or None :param plot: True if minimap image should be displayed :return: shared_information dictionary """ lines_information = {} if building_names is None: building_names = [b.name for b in city.buildings] factor = GeometryHelper.factor() x = math.ceil((city.upper_corner[0] - city.lower_corner[0]) * factor) + 1 y = math.ceil((city.upper_corner[1] - city.lower_corner[1]) * factor) + 1 city_map = [['' for _ in range(y + 1)] for _ in range(x + 1)] map_info = [[{} for _ in range(y + 1)] for _ in range(x + 1)] img = Image.new('RGB', (x + 1, y + 1), "black") # create a new black image city_image = img.load() # create the pixel map for building_name in building_names: building = city.city_object(building_name) line = 0 for ground in building.grounds: length = len(ground.perimeter_polygon.coordinates) - 1 for i, coordinate in enumerate(ground.perimeter_polygon.coordinates): j = i + 1 if i == length: j = 0 next_coordinate = ground.perimeter_polygon.coordinates[j] distance = GeometryHelper.distance_between_points(coordinate, next_coordinate) steps = int(distance * factor * 2) if steps == 0: continue delta_x = (next_coordinate[0] - coordinate[0]) / steps delta_y = (next_coordinate[1] - coordinate[1]) / steps for k in range(0, steps): new_coordinate = (coordinate[0] + (delta_x * k), coordinate[1] + (delta_y * k)) point = GeometryHelper.coordinate_to_map_point(new_coordinate, city) x = point.x y = point.y if city_map[x][y] == '': city_map[x][y] = building.name map_info[x][y] = { 'line_start': (coordinate[0], coordinate[1]), 'line_end': (next_coordinate[0], next_coordinate[1]), } city_image[x, y] = (100, 0, 0) elif city_map[x][y] != building.name: neighbour = city.city_object(city_map[x][y]) neighbour_info = map_info[x][y] # prepare the keys neighbour_start_coordinate = f'{GeometryHelper.coordinate_to_map_point(neighbour_info["line_start"], city)}' building_start_coordinate = f'{GeometryHelper.coordinate_to_map_point(coordinate, city)}' neighbour_key = f'{neighbour.name}_{neighbour_start_coordinate}_{building_start_coordinate}' building_key = f'{building.name}_{building_start_coordinate}_{neighbour_start_coordinate}' # Add my neighbour info to my shared lines if building.name in lines_information and neighbour_key in lines_information[building.name]: shared_points = int(lines_information[building.name][neighbour_key]['shared_points']) lines_information[building.name][neighbour_key]['shared_points'] = shared_points + 1 else: if building.name not in lines_information: lines_information[building.name] = {} lines_information[building.name][neighbour_key] = { 'neighbour_name': neighbour.name, 'line_start': (coordinate[0], coordinate[1]), 'line_end': (next_coordinate[0], next_coordinate[1]), 'neighbour_line_start': neighbour_info['line_start'], 'neighbour_line_end': neighbour_info['line_end'], 'coordinate_start': f"{GeometryHelper.coordinate_to_map_point(coordinate, city)}", 'coordinate_end': f"{GeometryHelper.coordinate_to_map_point(next_coordinate, city)}", 'neighbour_start': f"{GeometryHelper.coordinate_to_map_point(neighbour_info['line_start'], city)}", 'neighbour_end': f"{GeometryHelper.coordinate_to_map_point(neighbour_info['line_end'], city)}", 'shared_points': 1 } # Add my info to my neighbour shared lines if neighbour.name in lines_information and building_key in lines_information[neighbour.name]: shared_points = int(lines_information[neighbour.name][building_key]['shared_points']) lines_information[neighbour.name][building_key]['shared_points'] = shared_points + 1 else: if neighbour.name not in lines_information: lines_information[neighbour.name] = {} lines_information[neighbour.name][building_key] = { 'neighbour_name': building.name, 'line_start': neighbour_info['line_start'], 'line_end': neighbour_info['line_end'], 'neighbour_line_start': (coordinate[0], coordinate[1]), 'neighbour_line_end': (next_coordinate[0], next_coordinate[1]), 'neighbour_start': f"{GeometryHelper.coordinate_to_map_point(coordinate, city)}", 'neighbour_end': f"{GeometryHelper.coordinate_to_map_point(next_coordinate, city)}", 'coordinate_start': f"{GeometryHelper.coordinate_to_map_point(neighbour_info['line_start'], city)}", 'coordinate_end': f"{GeometryHelper.coordinate_to_map_point(neighbour_info['line_end'], city)}", 'shared_points': 1 } if building.neighbours is None: building.neighbours = [neighbour] elif neighbour not in building.neighbours: building.neighbours.append(neighbour) if neighbour.neighbours is None: neighbour.neighbours = [building] elif building not in neighbour.neighbours: neighbour.neighbours.append(building) line += 1 if plot: img.show() return lines_information @staticmethod def segment_list_to_trimesh(lines) -> Trimesh: """ :param lines: lines :return: Transform a list of segments into a Trimesh """ # todo: trimesh has a method for this line_points = [lines[0][0], lines[0][1]] lines.remove(lines[0]) while len(lines) > 1: i = 0 for line in lines: i += 1 if GeometryHelper.distance_between_points(line[0], line_points[len(line_points) - 1]) < 1e-8: line_points.append(line[1]) lines.pop(i - 1) break if GeometryHelper.distance_between_points(line[1], line_points[len(line_points) - 1]) < 1e-8: line_points.append(line[0]) lines.pop(i - 1) break polyhedron = Polyhedron(Polygon(line_points).triangles) trimesh = Trimesh(polyhedron.vertices, polyhedron.faces) return trimesh @staticmethod def _merge_meshes(mesh1, mesh2): v_1 = mesh1.vertices f_1 = mesh1.faces v_2 = mesh2.vertices f_2 = mesh2.faces length = len(v_1) v_merge = np.concatenate((v_1, v_2)) f_merge = np.asarray(f_1) for item in f_2: point1 = item.item(0) + length point2 = item.item(1) + length point3 = item.item(2) + length surface = np.asarray([point1, point2, point3]) f_merge = np.concatenate((f_merge, [surface])) mesh_merge = Trimesh(vertices=v_merge, faces=f_merge) mesh_merge.fix_normals() return mesh_merge @staticmethod def divide_mesh_by_plane(trimesh, normal_plane, point_plane): """ Divide a mesh by a plane :param trimesh: Trimesh :param normal_plane: [x, y, z] :param point_plane: [x, y, z] :return: [Trimesh] """ # The first mesh returns the positive side of the plane and the second the negative side. # If the plane does not divide the mesh (i.e. it does not touch it, or it is coplanar with one or more faces), # then it returns only the original mesh. # todo: review split method in https://github.com/mikedh/trimesh/issues/235, # once triangulate_polygon in Polygon class is solved normal_plane_opp = [None] * len(normal_plane) for index, normal in enumerate(normal_plane): normal_plane_opp[index] = - normal section_1 = intersections.slice_mesh_plane(trimesh, normal_plane, point_plane) if section_1 is None: return [trimesh] lines = list(intersections.mesh_plane(trimesh, normal_plane, point_plane)) cap = GeometryHelper.segment_list_to_trimesh(lines) trimesh_1 = GeometryHelper._merge_meshes(section_1, cap) section_2 = intersections.slice_mesh_plane(trimesh, normal_plane_opp, point_plane) if section_2 is None: return [trimesh_1] trimesh_2 = GeometryHelper._merge_meshes(section_2, cap) return [trimesh_1, trimesh_2] @staticmethod def get_location(latitude, longitude) -> Location: """ Get Location from latitude and longitude :param latitude: Latitude :param longitude: Longitude :return: Location """ _data_path = Path(Path(__file__).parent.parent / 'data/geolocation/cities15000.txt').resolve() latitude = float(latitude) longitude = float(longitude) distance = math.inf country = 'Unknown' city = 'Unknown' region_code = 'Unknown' with open(_data_path, 'r', encoding='utf-8') as file: for _, line in enumerate(file): fields = line.split('\t') file_city_name = fields[2] file_latitude = float(fields[4]) file_longitude = float(fields[5]) file_country_code = fields[8] admin1_code = fields[10] admin2_code = fields[11] new_distance = math.sqrt(pow((latitude - file_latitude), 2) + pow((longitude - file_longitude), 2)) if distance > new_distance: distance = new_distance country = file_country_code city = file_city_name region_code = f'{file_country_code}.{admin1_code}.{admin2_code}' return Location(country, city, region_code) @staticmethod def distance_between_points(vertex1, vertex2): """ distance between points in an n-D Euclidean space :param vertex1: point or vertex :param vertex2: point or vertex :return: float """ power = 0 for dimension, current_vertex in enumerate(vertex1): power += math.pow(vertex2[dimension] - current_vertex, 2) distance = math.sqrt(power) return distance