""" Performs cartographic transformations (converts from longitude,latitude to native map projection x,y coordinates and vice versa) using PROJ (https://proj.org). A Proj class instance is initialized with proj map projection control parameter key/value pairs. The key/value pairs can either be passed in a dictionary, or as keyword arguments, or as a PROJ string (compatible with the proj command). See https://proj.org/operations/projections/index.html for examples of key/value pairs defining different map projections. Calling a Proj class instance with the arguments lon, lat will convert lon/lat (in degrees) to x/y native map projection coordinates (in meters). """ import re import warnings from typing import Any, Optional, Tuple, Type from pyproj._list import get_proj_operations_map from pyproj._proj import Factors, _Proj, proj_version_str # noqa: F401 from pyproj.compat import cstrencode, pystrdecode from pyproj.crs import CRS from pyproj.utils import _convertback, _copytobuffer pj_list = get_proj_operations_map() class Proj(_Proj): """ Performs cartographic transformations. Converts from longitude, latitude to native map projection x,y coordinates and vice versa using PROJ (https://proj.org). Attributes ---------- srs: str The string form of the user input used to create the Proj. crs: pyproj.crs.CRS The CRS object associated with the Proj. """ def __init__( self, projparams: Any = None, preserve_units: bool = True, **kwargs ) -> None: """ A Proj class instance is initialized with proj map projection control parameter key/value pairs. The key/value pairs can either be passed in a dictionary, or as keyword arguments, or as a PROJ string (compatible with the proj command). See https://proj.org/operations/projections/index.html for examples of key/value pairs defining different map projections. Parameters ---------- projparams: int, str, dict, pyproj.CRS A PROJ or WKT string, PROJ dict, EPSG integer, or a pyproj.CRS instance. preserve_units: bool If false, will ensure +units=m. **kwargs: PROJ projection parameters. Example usage: >>> from pyproj import Proj >>> p = Proj(proj='utm',zone=10,ellps='WGS84', preserve_units=False) >>> x,y = p(-120.108, 34.36116666) >>> 'x=%9.3f y=%11.3f' % (x,y) 'x=765975.641 y=3805993.134' >>> 'lon=%8.3f lat=%5.3f' % p(x,y,inverse=True) 'lon=-120.108 lat=34.361' >>> # do 3 cities at a time in a tuple (Fresno, LA, SF) >>> lons = (-119.72,-118.40,-122.38) >>> lats = (36.77, 33.93, 37.62 ) >>> x,y = p(lons, lats) >>> 'x: %9.3f %9.3f %9.3f' % x 'x: 792763.863 925321.537 554714.301' >>> 'y: %9.3f %9.3f %9.3f' % y 'y: 4074377.617 3763936.941 4163835.303' >>> lons, lats = p(x, y, inverse=True) # inverse transform >>> 'lons: %8.3f %8.3f %8.3f' % lons 'lons: -119.720 -118.400 -122.380' >>> 'lats: %8.3f %8.3f %8.3f' % lats 'lats: 36.770 33.930 37.620' >>> p2 = Proj('+proj=utm +zone=10 +ellps=WGS84', preserve_units=False) >>> x,y = p2(-120.108, 34.36116666) >>> 'x=%9.3f y=%11.3f' % (x,y) 'x=765975.641 y=3805993.134' >>> p = Proj("epsg:32667", preserve_units=False) >>> 'x=%12.3f y=%12.3f (meters)' % p(-114.057222, 51.045) 'x=-1783506.250 y= 6193827.033 (meters)' >>> p = Proj("epsg:32667") >>> 'x=%12.3f y=%12.3f (feet)' % p(-114.057222, 51.045) 'x=-5851386.754 y=20320914.191 (feet)' >>> # test data with radian inputs >>> p1 = Proj("epsg:4214") >>> x1, y1 = p1(116.366, 39.867) >>> '{:.3f} {:.3f}'.format(x1, y1) '116.366 39.867' >>> x2, y2 = p1(x1, y1, inverse=True) >>> '{:.3f} {:.3f}'.format(x2, y2) '116.366 39.867' """ self.crs = CRS.from_user_input(projparams, **kwargs) # make sure units are meters if preserve_units is False. if not preserve_units and "foot" in self.crs.axis_info[0].unit_name: # ignore export to PROJ string deprecation warning with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "You will likely lose important projection information", UserWarning, ) projstring = self.crs.to_proj4(4) projstring = re.sub(r"\s\+units=[\w-]+", "", projstring) projstring += " +units=m" self.crs = CRS(projstring) # ignore export to PROJ string deprecation warning with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "You will likely lose important projection information", UserWarning, ) projstring = self.crs.to_proj4() or self.crs.srs projstring = re.sub(r"\s\+?type=crs", "", projstring) super().__init__(cstrencode(projstring.strip())) def __call__( self, longitude: Any, latitude: Any, inverse: bool = False, errcheck: bool = False, radians: bool = False, ) -> Tuple[Any, Any]: """ Calling a Proj class instance with the arguments lon, lat will convert lon/lat (in degrees) to x/y native map projection coordinates (in meters). Inputs should be doubles (they will be cast to doubles if they are not, causing a slight performance hit). Works with numpy and regular python array objects, python sequences and scalars, but is fastest for array objects. Parameters ---------- longitude: scalar or array (numpy or python) Input longitude coordinate(s). latitude: scalar or array (numpy or python) Input latitude coordinate(s). inverse: boolean, optional If inverse is True the inverse transformation from x/y to lon/lat is performed. Default is False. radians: boolean, optional If True, will expect input data to be in radians and will return radians if the projection is geographic. Default is False (degrees). This does not work with pyproj 2 and is ignored. It will be enabled again in pyproj 3. errcheck: boolean, optional If True an exception is raised if the errors are found in the process. By default errcheck=False and ``inf`` is returned. Returns ------- Tuple[Any, Any]: The transformed coordinates. """ if radians: warnings.warn( "radian input is currently not supported in pyproj 2. " "Support for radian input will be added in pyproj 3." ) # process inputs, making copies that support buffer API. inx, xisfloat, xislist, xistuple = _copytobuffer(longitude) iny, yisfloat, yislist, yistuple = _copytobuffer(latitude) # call PROJ functions. inx and iny modified in place. if inverse: self._inv(inx, iny, errcheck=errcheck) else: self._fwd(inx, iny, errcheck=errcheck) # if inputs were lists, tuples or floats, convert back. outx = _convertback(xisfloat, xislist, xistuple, inx) outy = _convertback(yisfloat, yislist, xistuple, iny) return outx, outy def get_factors( self, longitude: Any, latitude: Any, radians: bool = False, errcheck: bool = False, ) -> Factors: """ .. versionadded:: 2.6.0 Calculate various cartographic properties, such as scale factors, angular distortion and meridian convergence. Depending on the underlying projection values will be calculated either numerically (default) or analytically. The function also calculates the partial derivatives of the given coordinate. Parameters ---------- longitude: scalar or array (numpy or python) Input longitude coordinate(s). latitude: scalar or array (numpy or python) Input latitude coordinate(s). radians: boolean, optional If True, will expect input data to be in radians. Default is False (degrees). errcheck: boolean, optional If True an exception is raised if the errors are found in the process. By default errcheck=False and ``inf`` is returned. Returns ------- Factors """ # process inputs, making copies that support buffer API. inx, xisfloat, xislist, xistuple = _copytobuffer(longitude) iny, yisfloat, yislist, yistuple = _copytobuffer(latitude) # calculate the factors factors = self._get_factors(inx, iny, radians=radians, errcheck=errcheck) # if inputs were lists, tuples or floats, convert back. return Factors( meridional_scale=_convertback( xisfloat, xislist, xistuple, factors.meridional_scale ), parallel_scale=_convertback( xisfloat, xislist, xistuple, factors.parallel_scale ), areal_scale=_convertback(xisfloat, xislist, xistuple, factors.areal_scale), angular_distortion=_convertback( xisfloat, xislist, xistuple, factors.angular_distortion ), meridian_parallel_angle=_convertback( xisfloat, xislist, xistuple, factors.meridian_parallel_angle ), meridian_convergence=_convertback( xisfloat, xislist, xistuple, factors.meridian_convergence ), tissot_semimajor=_convertback( xisfloat, xislist, xistuple, factors.tissot_semimajor ), tissot_semiminor=_convertback( xisfloat, xislist, xistuple, factors.tissot_semiminor ), dx_dlam=_convertback(xisfloat, xislist, xistuple, factors.dx_dlam), dx_dphi=_convertback(xisfloat, xislist, xistuple, factors.dx_dphi), dy_dlam=_convertback(xisfloat, xislist, xistuple, factors.dy_dlam), dy_dphi=_convertback(xisfloat, xislist, xistuple, factors.dy_dphi), ) def definition_string(self) -> str: """Returns formal definition string for projection >>> Proj("epsg:4326").definition_string() 'proj=longlat datum=WGS84 no_defs ellps=WGS84 towgs84=0,0,0' """ return pystrdecode(self.definition) def to_latlong_def(self) -> Optional[str]: """return the definition string of the geographic (lat/lon) coordinate version of the current projection""" return self.crs.geodetic_crs.to_proj4(4) if self.crs.geodetic_crs else None def to_latlong(self) -> "Proj": """return a new Proj instance which is the geographic (lat/lon) coordinate version of the current projection""" return Proj(self.crs.geodetic_crs) def __reduce__(self) -> Tuple[Type["Proj"], Tuple[str]]: """special method that allows pyproj.Proj instance to be pickled""" return self.__class__, (self.crs.srs,) def __repr__(self) -> str: return "Proj('{srs}', preserve_units=True)".format(srs=self.srs) def __eq__(self, other: Any) -> bool: if not isinstance(other, Proj): return False return self._is_equivalent(other)