""" monthly_to_hourly_demand module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2020 Project Author Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca """ import pandas as pd from city_model_structure.building_demand.occupants import Occupants import calendar as cal import helpers.constants as cte class MonthlyToHourlyDemand: """ MonthlyToHourlyDemand class """ def __init__(self, building, conditioning_seasons): self._hourly_heating = pd.DataFrame() self._hourly_cooling = pd.DataFrame() self._building = building self._conditioning_seasons = conditioning_seasons def hourly_heating(self, key): """ hourly distribution of the monthly heating of a building :param key: string :return: [hourly_heating] """ # todo: this method and the insel model have to be reviewed for more than one thermal zone external_temp = self._building.external_temperature[cte.HOUR] # todo: review index depending on how the schedules are defined, either 8760 or 24 hours for usage_zone in self._building.usage_zones: temp_set = float(usage_zone.heating_setpoint)-3 temp_back = float(usage_zone.heating_setback)-3 # todo: if these are data frames, then they should be called as (Occupancy should be in low case): # usage_zone.schedules.Occupancy # self._conditioning_seasons.heating occupancy = Occupants().get_complete_year_schedule(usage_zone.schedules['Occupancy']) heating_schedule = self._conditioning_seasons['heating'] hourly_heating = [] i = 0 j = 0 temp_grad_day = [] for month in range(1, 13): temp_grad_month = 0 month_range = cal.monthrange(2015, month)[1] for day in range(1, month_range+1): external_temp_med = 0 for hour in range(0, 24): external_temp_med += external_temp[key][i]/24 for hour in range(0, 24): if external_temp_med < temp_set and heating_schedule[month-1] == 1: if occupancy[hour] > 0: hdd = temp_set - external_temp[key][i] if hdd < 0: hdd = 0 temp_grad_day.append(hdd) else: hdd = temp_back - external_temp[key][i] if hdd < 0: hdd = 0 temp_grad_day.append(hdd) else: temp_grad_day.append(0) temp_grad_month += temp_grad_day[i] i += 1 for day in range(1, month_range + 1): for hour in range(0, 24): # monthly_demand = self._building.heating[cte.MONTH]['INSEL'][month-1] or maybe: # monthly_demand = self._building.heating[cte.MONTH].INSEL[month-1] monthly_demand = self._building.heating[cte.MONTH][month-1] if monthly_demand == 'NaN': monthly_demand = 0 if temp_grad_month == 0: hourly_demand = 0 else: hourly_demand = float(monthly_demand)*float(temp_grad_day[j])/float(temp_grad_month) hourly_heating.append(hourly_demand) j += 1 self._hourly_heating = pd.DataFrame(data=hourly_heating, columns=['monthly to hourly']) return self._hourly_heating def hourly_cooling(self, key): """ hourly distribution of the monthly cooling of a building :param key: string :return: [hourly_cooling] """ # todo: this method and the insel model have to be reviewed for more than one thermal zone external_temp = self._building.external_temperature[cte.HOUR] # todo: review index depending on how the schedules are defined, either 8760 or 24 hours for usage_zone in self._building.usage_zones: temp_set = float(usage_zone.cooling_setpoint) temp_back = 100 occupancy = Occupants().get_complete_year_schedule(usage_zone.schedules['Occupancy']) cooling_schedule = self._conditioning_seasons['cooling'] hourly_cooling = [] i = 0 j = 0 temp_grad_day = [] for month in range(1, 13): temp_grad_month = 0 month_range = cal.monthrange(2015, month)[1] for day in range(1, month_range[1] + 1): for hour in range(0, 24): if external_temp[key][i] > temp_set and cooling_schedule[month - 1] == 1: if occupancy[hour] > 0: cdd = external_temp[key][i] - temp_set if cdd < 0: cdd = 0 temp_grad_day.append(cdd) else: cdd = external_temp[key][i] - temp_back if cdd < 0: cdd = 0 temp_grad_day.append(cdd) else: temp_grad_day.append(0) temp_grad_month += temp_grad_day[i] i += 1 for day in range(1, month_range[1] + 1): for hour in range(0, 24): # monthly_demand = self._building.heating[cte.MONTH]['INSEL'][month-1] monthly_demand = self._building.cooling[cte.MONTH][month - 1] if monthly_demand == 'NaN': monthly_demand = 0 if temp_grad_month == 0: hourly_demand = 0 else: hourly_demand = float(monthly_demand) * float(temp_grad_day[j]) / float(temp_grad_month) hourly_cooling.append(hourly_demand) j += 1 self._hourly_cooling = pd.DataFrame(data=hourly_cooling, columns=['monthly to hourly']) return self._hourly_cooling