forked from s_ranjbar/city_retrofit
65 lines
2.4 KiB
Python
65 lines
2.4 KiB
Python
|
|
import pandas as pd
|
|
from imports.schedules.helpers.schedules_helper import SchedulesHelper
|
|
import parseidf
|
|
|
|
|
|
class IdfParser:
|
|
_OCCUPANCY_SCHEDULE= ("BLDG_OCC_SCH_wo_SB","Occupancy")
|
|
_Activity_Schedule= "ACTIVITY_SCH"
|
|
_Electrical_Equipent_Schedule= "BLDG_EQUIP_SCH"
|
|
_Lighting_Schedule="BLDG_LIGHT_SCH"
|
|
_Infiltration_Ventilation_Schedule="INFIL_QUARTER_ON_SCH"
|
|
|
|
def __init__(self, city, base_path, type):
|
|
self._city = city
|
|
self._idf_schedules_path = base_path / 'ASHRAE901_OfficeSmall_STD2019_Buffalo.idf'
|
|
with open(self._idf_schedules_path, 'r') as f:
|
|
idf = parseidf.parse(f.read())
|
|
|
|
for building in city.buildings:
|
|
schedules = dict()
|
|
for usage_zone in building.usage_zones:
|
|
usage_schedules = pd.Datafram(idf['SCHEDULE:COMPACT'])
|
|
|
|
Small_Office_Occupancy = []
|
|
Small_Office_OccupancyActivity = []
|
|
Small_Office_ElectricalEquipment = []
|
|
Small_Office_Lighting = []
|
|
Small_Office_Infiltration = []
|
|
|
|
for i in usage_schedules:
|
|
if i[1] == self._Occupancy_Schedule:
|
|
return Small_Office_Occupancy.append(i)
|
|
elif i[1] == 'ACTIVITY_SCH':
|
|
Small_Office_OccupancyActivity.append(i)
|
|
elif i[1] == 'BLDG_EQUIP_SCH':
|
|
Small_Office_ElectricalEquipment.append(i)
|
|
elif i[1] == 'BLDG_LIGHT_SCH':
|
|
Small_Office_Lighting.append(i)
|
|
elif i[1] == 'INFIL_QUARTER_ON_SCH':
|
|
Small_Office_Infiltration.append(i)
|
|
else:
|
|
print("The schedule name is not standard")
|
|
|
|
|
|
'''
|
|
# todo: should we save the data type? How?
|
|
number_of_schedule_types = 13
|
|
schedules_per_schedule_type = 3
|
|
day_types = dict({'week_day': 0, 'saturday': 1, 'sunday': 2})
|
|
for schedule_types in range(0, number_of_schedule_types):
|
|
data = pd.DataFrame()
|
|
columns_names = []
|
|
name = ''
|
|
for schedule_day in range(0, schedules_per_schedule_type):
|
|
row_cells = usage_schedules.iloc[schedules_per_schedule_type*schedule_types + schedule_day]
|
|
if schedule_day == day_types['week_day']:
|
|
name = row_cells[0]
|
|
columns_names.append(row_cells[2])
|
|
data1 = row_cells[schedules_per_schedule_type:]
|
|
data = pd.concat([data, data1], axis=1)
|
|
data.columns = columns_names
|
|
schedules[name] = data
|
|
usage_zone.schedules = schedules
|
|
''' |