city_retrofit/venv/lib/python3.7/site-packages/trimesh/intersections.py

713 lines
26 KiB
Python

"""
intersections.py
------------------
Primarily mesh-plane intersections (slicing).
"""
import numpy as np
from .constants import log, tol
from . import util
from . import geometry
from . import grouping
from . import transformations
def mesh_plane(mesh,
plane_normal,
plane_origin,
return_faces=False,
cached_dots=None):
"""
Find a the intersections between a mesh and a plane,
returning a set of line segments on that plane.
Parameters
---------
mesh : Trimesh object
Source mesh to slice
plane_normal : (3,) float
Normal vector of plane to intersect with mesh
plane_origin: (3,) float
Point on plane to intersect with mesh
return_faces: bool
If True return face index each line is from
cached_dots : (n, 3) float
If an external function has stored dot
products pass them here to avoid recomputing
Returns
----------
lines : (m, 2, 3) float
List of 3D line segments in space
face_index : (m,) int
Index of mesh.faces for each line
Only returned if return_faces was True
"""
def triangle_cases(signs):
"""
Figure out which faces correspond to which intersection
case from the signs of the dot product of each vertex.
Does this by bitbang each row of signs into an 8 bit
integer.
code : signs : intersects
0 : [-1 -1 -1] : No
2 : [-1 -1 0] : No
4 : [-1 -1 1] : Yes; 2 on one side, 1 on the other
6 : [-1 0 0] : Yes; one edge fully on plane
8 : [-1 0 1] : Yes; one vertex on plane, 2 on different sides
12 : [-1 1 1] : Yes; 2 on one side, 1 on the other
14 : [0 0 0] : No (on plane fully)
16 : [0 0 1] : Yes; one edge fully on plane
20 : [0 1 1] : No
28 : [1 1 1] : No
Parameters
----------
signs: (n,3) int, all values are -1,0, or 1
Each row contains the dot product of all three vertices
in a face with respect to the plane
Returns
---------
basic: (n,) bool, which faces are in the basic intersection case
one_vertex: (n,) bool, which faces are in the one vertex case
one_edge: (n,) bool, which faces are in the one edge case
"""
signs_sorted = np.sort(signs, axis=1)
coded = np.zeros(len(signs_sorted), dtype=np.int8) + 14
for i in range(3):
coded += signs_sorted[:, i] << 3 - i
# one edge fully on the plane
# note that we are only accepting *one* of the on- edge cases,
# where the other vertex has a positive dot product (16) instead
# of both on- edge cases ([6,16])
# this is so that for regions that are co-planar with the the section plane
# we don't end up with an invalid boundary
key = np.zeros(29, dtype=np.bool)
key[16] = True
one_edge = key[coded]
# one vertex on plane, other two on different sides
key[:] = False
key[8] = True
one_vertex = key[coded]
# one vertex on one side of the plane, two on the other
key[:] = False
key[[4, 12]] = True
basic = key[coded]
return basic, one_vertex, one_edge
def handle_on_vertex(signs, faces, vertices):
# case where one vertex is on plane, two are on different sides
vertex_plane = faces[signs == 0]
edge_thru = faces[signs != 0].reshape((-1, 2))
point_intersect, valid = plane_lines(plane_origin,
plane_normal,
vertices[edge_thru.T],
line_segments=False)
lines = np.column_stack((vertices[vertex_plane[valid]],
point_intersect)).reshape((-1, 2, 3))
return lines
def handle_on_edge(signs, faces, vertices):
# case where two vertices are on the plane and one is off
edges = faces[signs == 0].reshape((-1, 2))
points = vertices[edges]
return points
def handle_basic(signs, faces, vertices):
# case where one vertex is on one side and two are on the other
unique_element = grouping.unique_value_in_row(
signs, unique=[-1, 1])
edges = np.column_stack(
(faces[unique_element],
faces[np.roll(unique_element, 1, axis=1)],
faces[unique_element],
faces[np.roll(unique_element, 2, axis=1)])).reshape(
(-1, 2))
intersections, valid = plane_lines(plane_origin,
plane_normal,
vertices[edges.T],
line_segments=False)
# since the data has been pre- culled, any invalid intersections at all
# means the culling was done incorrectly and thus things are
# mega-fucked
assert valid.all()
return intersections.reshape((-1, 2, 3))
# check input plane
plane_normal = np.asanyarray(plane_normal,
dtype=np.float64)
plane_origin = np.asanyarray(plane_origin,
dtype=np.float64)
if plane_origin.shape != (3,) or plane_normal.shape != (3,):
raise ValueError('Plane origin and normal must be (3,)!')
if cached_dots is not None:
dots = cached_dots
else:
# dot product of each vertex with the plane normal indexed by face
# so for each face the dot product of each vertex is a row
# shape is the same as mesh.faces (n,3)
dots = np.einsum('i,ij->j', plane_normal,
(mesh.vertices - plane_origin).T)[mesh.faces]
# sign of the dot product is -1, 0, or 1
# shape is the same as mesh.faces (n,3)
signs = np.zeros(mesh.faces.shape, dtype=np.int8)
signs[dots < -tol.merge] = -1
signs[dots > tol.merge] = 1
# figure out which triangles are in the cross section,
# and which of the three intersection cases they are in
cases = triangle_cases(signs)
# handlers for each case
handlers = (handle_basic,
handle_on_vertex,
handle_on_edge)
# the (m, 2, 3) line segments
lines = np.vstack([h(signs[c],
mesh.faces[c],
mesh.vertices)
for c, h in zip(cases, handlers)])
log.debug('mesh_cross_section found %i intersections',
len(lines))
if return_faces:
face_index = np.hstack([np.nonzero(c)[0] for c in cases])
return lines, face_index
return lines
def mesh_multiplane(mesh,
plane_origin,
plane_normal,
heights):
"""
A utility function for slicing a mesh by multiple
parallel planes, which caches the dot product operation.
Parameters
-------------
mesh : trimesh.Trimesh
Geometry to be sliced by planes
plane_normal : (3,) float
Normal vector of plane
plane_origin : (3,) float
Point on a plane
heights : (m,) float
Offset distances from plane to slice at
Returns
--------------
lines : (m,) sequence of (n, 2, 2) float
Lines in space for m planes
to_3D : (m, 4, 4) float
Transform to move each section back to 3D
face_index : (m,) sequence of (n,) int
Indexes of mesh.faces for each segment
"""
# check input plane
plane_normal = util.unitize(plane_normal)
plane_origin = np.asanyarray(plane_origin,
dtype=np.float64)
heights = np.asanyarray(heights, dtype=np.float64)
# dot product of every vertex with plane
vertex_dots = np.dot(plane_normal,
(mesh.vertices - plane_origin).T)
# reconstruct transforms for each 2D section
base_transform = geometry.plane_transform(origin=plane_origin,
normal=plane_normal)
base_transform = np.linalg.inv(base_transform)
# alter translation Z inside loop
translation = np.eye(4)
# store results
transforms = []
face_index = []
segments = []
# loop through user specified heights
for height in heights:
# offset the origin by the height
new_origin = plane_origin + (plane_normal * height)
# offset the dot products by height and index by faces
new_dots = (vertex_dots - height)[mesh.faces]
# run the intersection with the cached dot products
lines, index = mesh_plane(mesh=mesh,
plane_origin=new_origin,
plane_normal=plane_normal,
return_faces=True,
cached_dots=new_dots)
# get the transforms to 3D space and back
translation[2, 3] = height
to_3D = np.dot(base_transform, translation)
to_2D = np.linalg.inv(to_3D)
transforms.append(to_3D)
# transform points to 2D frame
lines_2D = transformations.transform_points(
lines.reshape((-1, 3)),
to_2D)
# if we didn't screw up the transform all
# of the Z values should be zero
assert np.allclose(lines_2D[:, 2], 0.0)
# reshape back in to lines and discard Z
lines_2D = lines_2D[:, :2].reshape((-1, 2, 2))
# store (n, 2, 2) float lines
segments.append(lines_2D)
# store (n,) int indexes of mesh.faces
face_index.append(face_index)
# (n, 4, 4) transforms from 2D to 3D
transforms = np.array(transforms, dtype=np.float64)
return segments, transforms, face_index
def plane_lines(plane_origin,
plane_normal,
endpoints,
line_segments=True):
"""
Calculate plane-line intersections
Parameters
---------
plane_origin : (3,) float
Point on plane
plane_normal : (3,) float
Plane normal vector
endpoints : (2, n, 3) float
Points defining lines to be tested
line_segments : bool
If True, only returns intersections as valid if
vertices from endpoints are on different sides
of the plane.
Returns
---------
intersections : (m, 3) float
Cartesian intersection points
valid : (n, 3) bool
Indicate whether a valid intersection exists
for each input line segment
"""
endpoints = np.asanyarray(endpoints)
plane_origin = np.asanyarray(plane_origin).reshape(3)
line_dir = util.unitize(endpoints[1] - endpoints[0])
plane_normal = util.unitize(np.asanyarray(plane_normal).reshape(3))
t = np.dot(plane_normal, (plane_origin - endpoints[0]).T)
b = np.dot(plane_normal, line_dir.T)
# If the plane normal and line direction are perpendicular, it means
# the vector is 'on plane', and there isn't a valid intersection.
# We discard on-plane vectors by checking that the dot product is nonzero
valid = np.abs(b) > tol.zero
if line_segments:
test = np.dot(plane_normal,
np.transpose(plane_origin - endpoints[1]))
different_sides = np.sign(t) != np.sign(test)
nonzero = np.logical_or(np.abs(t) > tol.zero,
np.abs(test) > tol.zero)
valid = np.logical_and(valid, different_sides)
valid = np.logical_and(valid, nonzero)
d = np.divide(t[valid], b[valid])
intersection = endpoints[0][valid]
intersection = intersection + np.reshape(d, (-1, 1)) * line_dir[valid]
return intersection, valid
def planes_lines(plane_origins,
plane_normals,
line_origins,
line_directions,
return_distance=False,
return_denom=False):
"""
Given one line per plane find the intersection points.
Parameters
-----------
plane_origins : (n,3) float
Point on each plane
plane_normals : (n,3) float
Normal vector of each plane
line_origins : (n,3) float
Point at origin of each line
line_directions : (n,3) float
Direction vector of each line
return_distance : bool
Return distance from origin to point also
return_denom : bool
Return denominator, so you can check for small values
Returns
----------
on_plane : (n,3) float
Points on specified planes
valid : (n,) bool
Did plane intersect line or not
distance : (n,) float
[OPTIONAL] Distance from point
denom : (n,) float
[OPTIONAL] Denominator
"""
# check input types
plane_origins = np.asanyarray(plane_origins, dtype=np.float64)
plane_normals = np.asanyarray(plane_normals, dtype=np.float64)
line_origins = np.asanyarray(line_origins, dtype=np.float64)
line_directions = np.asanyarray(line_directions, dtype=np.float64)
# vector from line to plane
origin_vectors = plane_origins - line_origins
projection_ori = util.diagonal_dot(origin_vectors, plane_normals)
projection_dir = util.diagonal_dot(line_directions, plane_normals)
valid = np.abs(projection_dir) > 1e-5
distance = np.divide(projection_ori[valid],
projection_dir[valid])
on_plane = line_directions[valid] * distance.reshape((-1, 1))
on_plane += line_origins[valid]
result = [on_plane, valid]
if return_distance:
result.append(distance)
if return_denom:
result.append(projection_dir)
return result
def slice_faces_plane(vertices,
faces,
plane_normal,
plane_origin,
cached_dots=None):
"""
Slice a mesh (given as a set of faces and vertices) with a plane, returning a
new mesh (again as a set of faces and vertices) that is the
portion of the original mesh to the positive normal side of the plane.
Parameters
---------
vertices : (n, 3) float
Vertices of source mesh to slice
faces : (n, 3) int
Faces of source mesh to slice
plane_normal : (3,) float
Normal vector of plane to intersect with mesh
plane_origin : (3,) float
Point on plane to intersect with mesh
cached_dots : (n, 3) float
If an external function has stored dot
products pass them here to avoid recomputing
Returns
----------
new_vertices : (n, 3) float
Vertices of sliced mesh
new_faces : (n, 3) int
Faces of sliced mesh
"""
if len(vertices) == 0:
return vertices, faces
if cached_dots is not None:
dots = cached_dots
else:
# dot product of each vertex with the plane normal indexed by face
# so for each face the dot product of each vertex is a row
# shape is the same as faces (n,3)
dots = np.einsum('i,ij->j', plane_normal,
(vertices - plane_origin).T)[faces]
# Find vertex orientations w.r.t. faces for all triangles:
# -1 -> vertex "inside" plane (positive normal direction)
# 0 -> vertex on plane
# 1 -> vertex "outside" plane (negative normal direction)
signs = np.zeros(faces.shape, dtype=np.int8)
signs[dots < -tol.merge] = 1
signs[dots > tol.merge] = -1
signs[np.logical_and(dots >= -tol.merge, dots <= tol.merge)] = 0
# Find all triangles that intersect this plane
# onedge <- indices of all triangles intersecting the plane
# inside <- indices of all triangles "inside" the plane (positive normal)
signs_sum = signs.sum(axis=1, dtype=np.int8)
signs_asum = np.abs(signs).sum(axis=1, dtype=np.int8)
# Cases:
# (0,0,0), (-1,0,0), (-1,-1,0), (-1,-1,-1) <- inside
# (1,0,0), (1,1,0), (1,1,1) <- outside
# (1,0,-1), (1,-1,-1), (1,1,-1) <- onedge
onedge = np.logical_and(signs_asum >= 2,
np.abs(signs_sum) <= 1)
inside = (signs_sum == -signs_asum)
# Automatically include all faces that are "inside"
new_faces = faces[inside]
# Separate faces on the edge into two cases: those which will become
# quads (two vertices inside plane) and those which will become triangles
# (one vertex inside plane)
triangles = vertices[faces]
cut_triangles = triangles[onedge]
cut_faces_quad = faces[np.logical_and(onedge, signs_sum < 0)]
cut_faces_tri = faces[np.logical_and(onedge, signs_sum >= 0)]
cut_signs_quad = signs[np.logical_and(onedge, signs_sum < 0)]
cut_signs_tri = signs[np.logical_and(onedge, signs_sum >= 0)]
# If no faces to cut, the surface is not in contact with this plane.
# Thus, return a mesh with only the inside faces
if len(cut_faces_quad) + len(cut_faces_tri) == 0:
if len(new_faces) == 0:
# if no new faces at all return empty arrays
empty = (np.zeros((0, 3), dtype=np.float64),
np.zeros((0, 3), dtype=np.int64))
return empty
# find the unique indices in the new faces
# using an integer-only unique function
unique, inverse = grouping.unique_bincount(new_faces.reshape(-1),
minlength=len(vertices),
return_inverse=True)
# use the unique indices for our final vertices and faces
final_vert = vertices[unique]
final_face = inverse.reshape((-1, 3))
return final_vert, final_face
# Extract the intersections of each triangle's edges with the plane
o = cut_triangles # origins
d = np.roll(o, -1, axis=1) - o # directions
num = (plane_origin - o).dot(plane_normal) # compute num/denom
denom = np.dot(d, plane_normal)
denom[denom == 0.0] = 1e-12 # prevent division by zero
dist = np.divide(num, denom)
# intersection points for each segment
int_points = np.einsum('ij,ijk->ijk', dist, d) + o
# Initialize the array of new vertices with the current vertices
new_vertices = vertices
# Handle the case where a new quad is formed by the intersection
# First, extract the intersection points belonging to a new quad
quad_int_points = int_points[(signs_sum < 0)[onedge], :, :]
num_quads = len(quad_int_points)
if num_quads > 0:
# Extract the vertex on the outside of the plane, then get the vertices
# (in CCW order of the inside vertices)
quad_int_inds = np.where(cut_signs_quad == 1)[1]
quad_int_verts = cut_faces_quad[
np.stack((range(num_quads), range(num_quads)), axis=1),
np.stack(((quad_int_inds + 1) % 3, (quad_int_inds + 2) % 3), axis=1)]
# Fill out new quad faces with the intersection points as vertices
new_quad_faces = np.append(
quad_int_verts,
np.arange(len(new_vertices),
len(new_vertices) +
2 * num_quads).reshape(num_quads, 2), axis=1)
# Extract correct intersection points from int_points and order them in
# the same way as they were added to faces
new_quad_vertices = quad_int_points[
np.stack((range(num_quads), range(num_quads)), axis=1),
np.stack((((quad_int_inds + 2) % 3).T, quad_int_inds.T),
axis=1), :].reshape(2 * num_quads, 3)
# Add new vertices to existing vertices, triangulate quads, and add the
# resulting triangles to the new faces
new_vertices = np.append(new_vertices, new_quad_vertices, axis=0)
new_tri_faces_from_quads = geometry.triangulate_quads(new_quad_faces)
new_faces = np.append(new_faces, new_tri_faces_from_quads, axis=0)
# Handle the case where a new triangle is formed by the intersection
# First, extract the intersection points belonging to a new triangle
tri_int_points = int_points[(signs_sum >= 0)[onedge], :, :]
num_tris = len(tri_int_points)
if num_tris > 0:
# Extract the single vertex for each triangle inside the plane and get the
# inside vertices (CCW order)
tri_int_inds = np.where(cut_signs_tri == -1)[1]
tri_int_verts = cut_faces_tri[range(
num_tris), tri_int_inds].reshape(num_tris, 1)
# Fill out new triangles with the intersection points as vertices
new_tri_faces = np.append(
tri_int_verts,
np.arange(len(new_vertices),
len(new_vertices) +
2 * num_tris).reshape(num_tris, 2),
axis=1)
# Extract correct intersection points and order them in the same way as
# the vertices were added to the faces
new_tri_vertices = tri_int_points[
np.stack((range(num_tris), range(num_tris)), axis=1),
np.stack((tri_int_inds.T, ((tri_int_inds + 2) % 3).T),
axis=1),
:].reshape(2 * num_tris, 3)
# Append new vertices and new faces
new_vertices = np.append(new_vertices, new_tri_vertices, axis=0)
new_faces = np.append(new_faces, new_tri_faces, axis=0)
# find the unique indices in the new faces
# using an integer-only unique function
unique, inverse = grouping.unique_bincount(new_faces.reshape(-1),
minlength=len(new_vertices),
return_inverse=True)
# use the unique indexes for our final vertex and faces
final_vert = new_vertices[unique]
final_face = inverse.reshape((-1, 3))
return final_vert, final_face
def slice_mesh_plane(mesh,
plane_normal,
plane_origin,
cap=False,
cached_dots=None,
**kwargs):
"""
Slice a mesh with a plane, returning a new mesh that is the
portion of the original mesh to the positive normal side of the plane
Parameters
---------
mesh : Trimesh object
Source mesh to slice
plane_normal : (3,) float
Normal vector of plane to intersect with mesh
plane_origin : (3,) float
Point on plane to intersect with mesh
cap : bool
If True, cap the result with a triangulated polygon
cached_dots : (n, 3) float
If an external function has stored dot
products pass them here to avoid recomputing
Returns
----------
new_mesh : Trimesh object
Sliced mesh
"""
# check input for none
if mesh is None:
return None
# avoid circular import
from .base import Trimesh
from .creation import triangulate_polygon
# check input plane
plane_normal = np.asanyarray(plane_normal,
dtype=np.float64)
plane_origin = np.asanyarray(plane_origin,
dtype=np.float64)
# check to make sure origins and normals have acceptable shape
shape_ok = ((plane_origin.shape == (3,) or
util.is_shape(plane_origin, (-1, 3))) and
(plane_normal.shape == (3,) or
util.is_shape(plane_normal, (-1, 3))) and
plane_origin.shape == plane_normal.shape)
if not shape_ok:
raise ValueError('plane origins and normals must be (n, 3)!')
# start with copy of original mesh, faces, and vertices
sliced_mesh = mesh.copy()
vertices = mesh.vertices.copy()
faces = mesh.faces.copy()
# slice away specified planes
for origin, normal in zip(plane_origin.reshape((-1, 3)),
plane_normal.reshape((-1, 3))):
# calculate dots here if not passed in to save time
# in case of cap
if cached_dots is None:
# dot product of each vertex with the plane normal indexed by face
# so for each face the dot product of each vertex is a row
# shape is the same as faces (n,3)
dots = np.einsum('i,ij->j', normal,
(vertices - origin).T)[faces]
else:
dots = cached_dots
# save the new vertices and faces
vertices, faces = slice_faces_plane(vertices=vertices,
faces=faces,
plane_normal=normal,
plane_origin=origin,
cached_dots=dots)
# check if cap arg specified
if cap:
# check if mesh is watertight (can't cap if not)
if not sliced_mesh.is_watertight:
raise ValueError('Input mesh must be watertight to cap slice')
path = sliced_mesh.section(plane_normal=normal,
plane_origin=origin,
cached_dots=dots)
# transform Path3D onto XY plane for triangulation
on_plane, to_3D = path.to_planar()
# triangulate each closed region of 2D cap
# without adding any new vertices
v, f = [], []
for polygon in on_plane.polygons_full:
t = triangulate_polygon(
polygon, triangle_args='p', allow_boundary_steiner=False)
v.append(t[0])
f.append(t[1])
# append regions and reindex
vf, ff = util.append_faces(v, f)
# make vertices 3D and transform back to mesh frame
vf = np.column_stack((vf, np.zeros(len(vf))))
vf = transformations.transform_points(vf, to_3D)
# add cap vertices and faces and reindex
vertices, faces = util.append_faces([vertices, vf], [faces, ff])
# Update mesh with cap (processing needed to merge vertices)
sliced_mesh = Trimesh(vertices=vertices, faces=faces)
vertices, faces = sliced_mesh.vertices.copy(), sliced_mesh.faces.copy()
# return the sliced mesh
return Trimesh(vertices=vertices, faces=faces, process=False)