city_retrofit/factories/occupancy_feeders/usage_schedules.py
2020-12-15 14:57:46 -05:00

40 lines
1.7 KiB
Python

"""
Schedules retrieve the specific usage schedules module for the given standard
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
contributors Pilar Monsalvete pilar_monsalvete@yahoo.es
"""
import pandas as pd
from factories.occupancy_feeders.helpers.schedules_helper import SchedulesHelper
class ComnetSchedules:
def __init__(self, city, base_path):
self._city = city
self._comnet_schedules_path = base_path / 'comnet_archetypes.xlsx'
xls = pd.ExcelFile(self._comnet_schedules_path)
# todo: review for more than one usage_zones per building
for building in city.buildings:
schedules = dict()
usage_schedules = pd.read_excel(xls, sheet_name=SchedulesHelper.comnet_pluto_schedules_function(building.function),
skiprows=[0, 1, 2, 3], nrows=39, usecols="A:AA")
# todo: should we save the data type? How?
number_of_schedule_types = 13
schedules_per_schedule_type = 3
day_types = dict({'week_day': 0, 'saturday': 1, 'sunday': 2})
for schedule_types in range(0, number_of_schedule_types):
data = pd.DataFrame()
columns_names = []
name = ''
for schedule_day in range(0, schedules_per_schedule_type):
row_cells = usage_schedules.iloc[schedules_per_schedule_type*schedule_types + schedule_day]
if schedule_day == day_types['week_day']:
name = row_cells[0]
columns_names.append(row_cells[2])
data1 = row_cells[schedules_per_schedule_type:]
data = pd.concat([data, data1], axis=1)
data.columns = columns_names
schedules[name] = data
building.usage_zones[0].schedules = schedules