city_retrofit/venv/lib/python3.7/site-packages/trimesh/graph.py

1003 lines
30 KiB
Python

"""
graph.py
-------------
Deal with graph operations. Primarily deal with graphs in (n, 2)
edge list form, and abstract the backend graph library being used.
Currently uses networkx or scipy.sparse.csgraph backend.
"""
import numpy as np
import collections
from . import util
from . import grouping
from . import exceptions
from .constants import log, tol
from .geometry import faces_to_edges
try:
from scipy.sparse import csgraph, coo_matrix
except BaseException as E:
# re-raise exception when used
csgraph = exceptions.ExceptionModule(E)
coo_matrix = exceptions.closure(E)
try:
import networkx as nx
except BaseException as E:
# create a dummy module which will raise the ImportError
# or other exception only when someone tries to use networkx
nx = exceptions.ExceptionModule(E)
def face_adjacency(faces=None,
mesh=None,
return_edges=False):
"""
Returns an (n, 2) list of face indices.
Each pair of faces in the list shares an edge, making them adjacent.
Parameters
-----------
faces : (n, 3) int, or None
Vertex indices representing triangles
mesh : Trimesh object
If passed will used cached edges
instead of generating from faces
return_edges : bool
Return the edges shared by adjacent faces
Returns
----------
adjacency : (m, 2) int
Indexes of faces that are adjacent
edges: (m, 2) int
Only returned if return_edges is True
Indexes of vertices which make up the
edges shared by the adjacent faces
Examples
----------
This is useful for lots of things such as finding
face- connected components:
>>> graph = nx.Graph()
>>> graph.add_edges_from(mesh.face_adjacency)
>>> groups = nx.connected_components(graph_connected)
"""
if mesh is None:
# first generate the list of edges for the current faces
# also return the index for which face the edge is from
edges, edges_face = faces_to_edges(faces, return_index=True)
# make sure edge rows are sorted
edges.sort(axis=1)
else:
# if passed a mesh, used the cached values
edges = mesh.edges_sorted
edges_face = mesh.edges_face
# this will return the indices for duplicate edges
# every edge appears twice in a well constructed mesh
# so for every row in edge_idx:
# edges[edge_idx[*][0]] == edges[edge_idx[*][1]]
# in this call to group rows we discard edges which
# don't occur twice
edge_groups = grouping.group_rows(edges, require_count=2)
if len(edge_groups) == 0:
log.warning('No adjacent faces detected! Did you merge vertices?')
# the pairs of all adjacent faces
# so for every row in face_idx, self.faces[face_idx[*][0]] and
# self.faces[face_idx[*][1]] will share an edge
adjacency = edges_face[edge_groups]
# degenerate faces may appear in adjacency as the same value
nondegenerate = adjacency[:, 0] != adjacency[:, 1]
adjacency = adjacency[nondegenerate]
# sort pairs in-place so we can search for indexes with ordered pairs
adjacency.sort(axis=1)
if return_edges:
adjacency_edges = edges[edge_groups[:, 0][nondegenerate]]
assert len(adjacency_edges) == len(adjacency)
return adjacency, adjacency_edges
return adjacency
def face_adjacency_unshared(mesh):
"""
Return the vertex index of the two vertices not in the shared
edge between two adjacent faces
Parameters
----------
mesh : Trimesh object
Input mesh
Returns
-----------
vid_unshared : (len(mesh.face_adjacency), 2) int
Indexes of mesh.vertices
for degenerate faces without exactly
one unshared vertex per face it will be -1
"""
# the non- shared vertex index is the same shape
# as face_adjacency holding vertex indices vs face indices
vid_unshared = np.zeros_like(mesh.face_adjacency,
dtype=np.int64) - 1
# get the shared edges between adjacent faces
edges = mesh.face_adjacency_edges
# loop through the two columns of face adjacency
for i, fid in enumerate(mesh.face_adjacency.T):
# faces from the current column of face adjacency
faces = mesh.faces[fid]
# should have one True per row of (3,)
# index of vertex not included in shared edge
unshared = np.logical_not(np.logical_or(
faces == edges[:, 0].reshape((-1, 1)),
faces == edges[:, 1].reshape((-1, 1))))
# each row should have exactly one uncontained verted
row_ok = unshared.sum(axis=1) == 1
# any degenerate row should be ignored
unshared[~row_ok, :] = False
# set the
vid_unshared[row_ok, i] = faces[unshared]
return vid_unshared
def face_adjacency_radius(mesh):
"""
Compute an approximate radius between adjacent faces.
Parameters
--------------
mesh : trimesh.Trimesh
Returns
-------------
radii : (len(self.face_adjacency),) float
Approximate radius between faces
Parallel faces will have a value of np.inf
span : (len(self.face_adjacency),) float
Perpendicular projection distance of two
unshared vertices onto the shared edge
"""
# solve for the radius of the adjacent faces
# distance
# R = ------------------
# 2 * sin(theta / 2)
nonzero = mesh.face_adjacency_angles > np.radians(.01)
denominator = np.abs(
2.0 * np.sin(mesh.face_adjacency_angles[nonzero] / 1.0))
# consider the distance between the non- shared vertices of the
# face adjacency pair as the key distance
point_pairs = mesh.vertices[mesh.face_adjacency_unshared]
vectors = np.diff(point_pairs,
axis=1).reshape((-1, 3))
# the vertex indices of the shared edge for the adjacency pairx
edges = mesh.face_adjacency_edges
# unit vector along shared the edge
edges_vec = util.unitize(np.diff(mesh.vertices[edges],
axis=1).reshape((-1, 3)))
# the vector of the perpendicular projection to the shared edge
perp = np.subtract(
vectors, (util.diagonal_dot(
vectors, edges_vec).reshape(
(-1, 1)) * edges_vec))
# the length of the perpendicular projection
span = util.row_norm(perp)
# complete the values for non- infinite radii
radii = np.ones(len(mesh.face_adjacency)) * np.inf
radii[nonzero] = span[nonzero] / denominator
return radii, span
def vertex_adjacency_graph(mesh):
"""
Returns a networkx graph representing the vertices and
their connections in the mesh.
Parameters
----------
mesh : Trimesh object
Returns
---------
graph : networkx.Graph
Graph representing vertices and edges between
them where vertices are nodes and edges are edges
Examples
----------
This is useful for getting nearby vertices for a given vertex,
potentially for some simple smoothing techniques.
>>> graph = mesh.vertex_adjacency_graph
>>> graph.neighbors(0)
> [1, 3, 4]
"""
g = nx.Graph()
g.add_edges_from(mesh.edges_unique)
return g
def shared_edges(faces_a, faces_b):
"""
Given two sets of faces, find the edges which are in both sets.
Parameters
---------
faces_a : (n, 3) int
Array of faces
faces_b : (m, 3) int
Array of faces
Returns
---------
shared : (p, 2) int
Edges shared between faces
"""
e_a = np.sort(faces_to_edges(faces_a), axis=1)
e_b = np.sort(faces_to_edges(faces_b), axis=1)
shared = grouping.boolean_rows(
e_a, e_b, operation=np.intersect1d)
return shared
def facets(mesh, engine=None):
"""
Find the list of parallel adjacent faces.
Parameters
-----------
mesh : trimesh.Trimesh
engine : str
Which graph engine to use:
('scipy', 'networkx')
Returns
---------
facets : sequence of (n,) int
Groups of face indexes of
parallel adjacent faces.
"""
# what is the radius of a circle that passes through the perpendicular
# projection of the vector between the two non- shared vertices
# onto the shared edge, with the face normal from the two adjacent faces
radii = mesh.face_adjacency_radius
# what is the span perpendicular to the shared edge
span = mesh.face_adjacency_span
# a very arbitrary formula for declaring two adjacent faces
# parallel in a way that is hopefully (and anecdotally) robust
# to numeric error
# a common failure mode is two faces that are very narrow with a slight
# angle between them, so here we divide by the perpendicular span
# to penalize very narrow faces, and then square it just for fun
parallel = np.ones(len(radii), dtype=np.bool)
# if span is zero we know faces are small/parallel
nonzero = np.abs(span) > tol.zero
# faces with a radii/span ratio larger than a threshold pass
parallel[nonzero] = (radii[nonzero] /
span[nonzero]) ** 2 > tol.facet_threshold
# run connected components on the parallel faces to group them
components = connected_components(
mesh.face_adjacency[parallel],
nodes=np.arange(len(mesh.faces)),
min_len=2,
engine=engine)
return components
def split(mesh, only_watertight=True, adjacency=None, engine=None, **kwargs):
"""
Split a mesh into multiple meshes from face
connectivity.
If only_watertight is true it will only return
watertight meshes and will attempt to repair
single triangle or quad holes.
Parameters
----------
mesh : trimesh.Trimesh
only_watertight: bool
Only return watertight components
adjacency : (n, 2) int
Face adjacency to override full mesh
engine : str or None
Which graph engine to use
Returns
----------
meshes : (m,) trimesh.Trimesh
Results of splitting
"""
if adjacency is None:
adjacency = mesh.face_adjacency
# if only watertight the shortest thing we can split has 3 triangles
if only_watertight:
min_len = 4
else:
min_len = 1
components = connected_components(
edges=adjacency,
nodes=np.arange(len(mesh.faces)),
min_len=min_len,
engine=engine)
meshes = mesh.submesh(
components, only_watertight=only_watertight, **kwargs)
return meshes
def connected_components(edges,
min_len=1,
nodes=None,
engine=None):
"""
Find groups of connected nodes from an edge list.
Parameters
-----------
edges : (n, 2) int
Edges between nodes
nodes : (m, ) int or None
List of nodes that exist
min_len : int
Minimum length of a component group to return
engine : str or None
Which graph engine to use (None for automatic):
(None, 'networkx', 'scipy')
Returns
-----------
components : (n,) sequence of (*,) int
Nodes which are connected
"""
def components_networkx():
"""
Find connected components using networkx
"""
graph = nx.from_edgelist(edges)
# make sure every face has a node, so single triangles
# aren't discarded (as they aren't adjacent to anything)
if min_len <= 1:
graph.add_nodes_from(nodes)
iterable = nx.connected_components(graph)
# newer versions of networkx return sets rather than lists
components = np.array(
[np.array(list(i), dtype=np.int64)
for i in iterable if len(i) >= min_len])
return components
def components_csgraph():
"""
Find connected components using scipy.sparse.csgraph
"""
# label each node
labels = connected_component_labels(edges,
node_count=node_count)
# we have to remove results that contain nodes outside
# of the specified node set and reindex
contained = np.zeros(node_count, dtype=np.bool)
contained[nodes] = True
index = np.arange(node_count, dtype=np.int64)[contained]
components = grouping.group(labels[contained], min_len=min_len)
components = np.array([index[c] for c in components])
return components
# check input edges
edges = np.asanyarray(edges, dtype=np.int64)
# if no nodes were specified just use unique
if nodes is None:
nodes = np.unique(edges)
# exit early if we have no nodes
if len(nodes) == 0:
return np.array([])
elif len(edges) == 0:
if min_len <= 1:
return np.reshape(nodes, (-1, 1))
else:
return np.array([])
if not util.is_shape(edges, (-1, 2)):
raise ValueError('edges must be (n, 2)!')
# find the maximum index referenced in either nodes or edges
counts = [0]
if len(edges) > 0:
counts.append(edges.max())
if len(nodes) > 0:
counts.append(nodes.max())
node_count = np.max(counts) + 1
# remove edges that don't have both nodes in the node set
mask = np.zeros(node_count, dtype=np.bool)
mask[nodes] = True
edges_ok = mask[edges].all(axis=1)
edges = edges[edges_ok]
# networkx is pure python and is usually 5-10x slower than scipy
engines = collections.OrderedDict((
('scipy', components_csgraph),
('networkx', components_networkx)))
# if a graph engine has explicitly been requested use it
if engine in engines:
return engines[engine]()
# otherwise, go through our ordered list of graph engines
# until we get to one that has actually been installed
for function in engines.values():
try:
return function()
# will be raised if the library didn't import correctly above
except NameError:
continue
raise ImportError('No connected component engines available!')
def connected_component_labels(edges, node_count=None):
"""
Label graph nodes from an edge list, using scipy.sparse.csgraph
Parameters
-----------
edges : (n, 2) int
Edges of a graph
node_count : int, or None
The largest node in the graph.
Returns
----------
labels : (node_count,) int
Component labels for each node
"""
matrix = edges_to_coo(edges, node_count)
body_count, labels = csgraph.connected_components(
matrix, directed=False)
if node_count is not None:
assert len(labels) == node_count
return labels
def split_traversal(traversal,
edges,
edges_hash=None):
"""
Given a traversal as a list of nodes, split the traversal
if a sequential index pair is not in the given edges.
Parameters
--------------
edges : (n, 2) int
Graph edge indexes
traversal : (m,) int
Traversal through edges
edge_hash : (n,)
Edges sorted on axis=1 and
passed to grouping.hashable_rows
Returns
---------------
split : sequence of (p,) int
"""
traversal = np.asanyarray(traversal,
dtype=np.int64)
# hash edge rows for contains checks
if edges_hash is None:
edges_hash = grouping.hashable_rows(
np.sort(edges, axis=1))
# turn the (n,) traversal into (n-1, 2) edges
trav_edge = np.column_stack((traversal[:-1],
traversal[1:]))
# hash each edge so we can compare to edge set
trav_hash = grouping.hashable_rows(
np.sort(trav_edge, axis=1))
# check if each edge is contained in edge set
contained = np.in1d(trav_hash, edges_hash)
# exit early if every edge of traversal exists
if contained.all():
# just reshape one traversal
split = [traversal]
else:
# find contiguous groups of contained edges
blocks = grouping.blocks(contained,
min_len=1,
only_nonzero=True)
# turn edges back in to sequence of traversals
split = [np.append(trav_edge[b][:, 0],
trav_edge[b[-1]][1])
for b in blocks]
# close traversals if necessary
for i, t in enumerate(split):
# make sure elements of sequence are numpy arrays
split[i] = np.asanyarray(split[i], dtype=np.int64)
# don't close if its a single edge
if len(t) <= 2:
continue
# make sure it's not already closed
edge = np.sort([t[0], t[-1]])
if edge.ptp() == 0:
continue
close = grouping.hashable_rows(edge.reshape((1, 2)))[0]
# if we need the edge add it
if close in edges_hash:
split[i] = np.append(t, t[0]).astype(np.int64)
result = np.array(split)
return result
def fill_traversals(traversals, edges, edges_hash=None):
"""
Convert a traversal of a list of edges into a sequence of
traversals where every pair of consecutive node indexes
is an edge in a passed edge list
Parameters
-------------
traversals : sequence of (m,) int
Node indexes of traversals of a graph
edges : (n, 2) int
Pairs of connected node indexes
edges_hash : None, or (n,) int
Edges sorted along axis 1 then hashed
using grouping.hashable_rows
Returns
--------------
splits : sequence of (p,) int
Node indexes of connected traversals
"""
# make sure edges are correct type
edges = np.asanyarray(edges, dtype=np.int64)
# make sure edges are sorted
edges.sort(axis=1)
# if there are no traversals just return edges
if len(traversals) == 0:
return edges.copy()
# hash edges for contains checks
if edges_hash is None:
edges_hash = grouping.hashable_rows(edges)
splits = []
for nodes in traversals:
# split traversals to remove edges
# that don't actually exist
splits.extend(split_traversal(
traversal=nodes,
edges=edges,
edges_hash=edges_hash))
# turn the split traversals back into (n, 2) edges
included = util.vstack_empty([np.column_stack((i[:-1], i[1:]))
for i in splits])
if len(included) > 0:
# sort included edges in place
included.sort(axis=1)
# make sure any edges not included in split traversals
# are just added as a length 2 traversal
splits.extend(grouping.boolean_rows(
edges,
included,
operation=np.setdiff1d))
else:
# no edges were included, so our filled traversal
# is just the original edges copied over
splits = edges.copy()
return splits
def traversals(edges, mode='bfs'):
"""
Given an edge list generate a sequence of ordered depth
first search traversals using scipy.csgraph routines.
Parameters
------------
edges : (n, 2) int
Undirected edges of a graph
mode : str
Traversal type, 'bfs' or 'dfs'
Returns
-----------
traversals : (m,) sequence of (p,) int
Ordered DFS or BFS traversals of the graph.
"""
edges = np.array(edges, dtype=np.int64)
if len(edges) == 0:
return []
elif not util.is_shape(edges, (-1, 2)):
raise ValueError('edges are not (n, 2)!')
# pick the traversal method
mode = str(mode).lower().strip()
if mode == 'bfs':
func = csgraph.breadth_first_order
elif mode == 'dfs':
func = csgraph.depth_first_order
else:
raise ValueError('traversal mode must be either dfs or bfs')
# make sure edges are sorted so we can query
# an ordered pair later
edges.sort(axis=1)
# set of nodes to make sure we get every node
nodes = set(edges.reshape(-1))
# coo_matrix for csgraph routines
graph = edges_to_coo(edges)
# we're going to make a sequence of traversals
traversals = []
while len(nodes) > 0:
# starting at any node
start = nodes.pop()
# get an (n,) ordered traversal
ordered = func(graph,
i_start=start,
return_predecessors=False,
directed=False).astype(np.int64)
traversals.append(ordered)
# remove the nodes we've consumed
nodes.difference_update(ordered)
return traversals
def edges_to_coo(edges, count=None, data=None):
"""
Given an edge list, return a boolean scipy.sparse.coo_matrix
representing the edges in matrix form.
Parameters
------------
edges : (n, 2) int
Edges of a graph
count : int
The total number of nodes in the graph
if None: count = edges.max() + 1
data : (n,) any
Assign data to each edge, if None will
be bool True for each specified edge
Returns
------------
matrix: (count, count) scipy.sparse.coo_matrix
Sparse COO
"""
edges = np.asanyarray(edges, dtype=np.int64)
if not (len(edges) == 0 or
util.is_shape(edges, (-1, 2))):
raise ValueError('edges must be (n, 2)!')
# if count isn't specified just set it to largest
# value referenced in edges
if count is None:
count = edges.max() + 1
count = int(count)
# if no data is specified set every specified edge
# to True
if data is None:
data = np.ones(len(edges), dtype=np.bool)
matrix = coo_matrix((data, edges.T),
dtype=data.dtype,
shape=(count, count))
return matrix
def neighbors(edges, max_index=None, directed=False):
"""
Find the neighbors for each node in an edgelist graph.
TODO : re-write this with sparse matrix operations
Parameters
------------
edges : (n, 2) int
Connected nodes
directed : bool
If True, only connect edges in one direction
Returns
---------
neighbors : sequence
Vertex index corresponds to set of other vertex indices
"""
neighbors = collections.defaultdict(set)
if directed:
[neighbors[edge[0]].add(edge[1])
for edge in edges]
else:
[(neighbors[edge[0]].add(edge[1]),
neighbors[edge[1]].add(edge[0]))
for edge in edges]
if max_index is None:
max_index = edges.max() + 1
array = [list(neighbors[i]) for i in range(max_index)]
return array
def smoothed(mesh, angle=None, facet_minarea=15):
"""
Return a non- watertight version of the mesh which
will render nicely with smooth shading by
disconnecting faces at sharp angles to each other.
Parameters
-----------
mesh : trimesh.Trimesh
Source geometry
angle : float or None
Angle in radians face pairs with angles
smaller than this will appear smoothed
facet_minarea : float or None
Minimum area fraction to consider
IE for `facets_minarea=25` only facets larger
than `mesh.area / 25` will be considered.
Returns
---------
smooth : trimesh.Trimesh
Geometry with disconnected face patches
"""
if angle is None:
angle = np.radians(30)
# if the mesh has no adjacent faces return a copy
if len(mesh.face_adjacency) == 0:
return mesh.copy()
# face pairs below angle threshold
angle_ok = mesh.face_adjacency_angles <= angle
# subset of face adjacency
adjacency = mesh.face_adjacency[angle_ok]
# coplanar groups of faces
facets = []
nodes = None
# collect coplanar regions for smoothing
if facet_minarea is not None:
areas = mesh.area_faces
min_area = mesh.area / facet_minarea
try:
# we can survive not knowing facets
# exclude facets with few faces
facets = [f for f in mesh.facets
if areas[f].sum() > min_area]
if len(facets) > 0:
# mask for removing adjacency pairs where
# one of the faces is contained in a facet
mask = np.ones(len(mesh.faces),
dtype=np.bool)
mask[np.hstack(facets)] = False
# apply the mask to adjacency
adjacency = adjacency[
mask[adjacency].all(axis=1)]
# nodes are no longer every faces
nodes = np.unique(adjacency)
except BaseException:
log.warning('failed to calculate facets',
exc_info=True)
# run connected components on facet adjacency
components = connected_components(
adjacency,
min_len=1,
nodes=nodes).tolist()
# add back coplanar groups if any exist
if len(facets) > 0:
components.extend(facets)
if len(components) == 0:
# if no components for some reason
# just return a copy of the original mesh
return mesh.copy()
# add back any faces that were missed
unique = np.unique(np.hstack(components))
if len(unique) != len(mesh.faces):
# things like single loose faces
# or groups below facet_minlen
broke = np.setdiff1d(
np.arange(len(mesh.faces)), unique)
components.extend(broke.reshape((-1, 1)))
# get a submesh as a single appended Trimesh
smooth = mesh.submesh(components,
only_watertight=False,
append=True)
# store face indices from original mesh
smooth.metadata['original_components'] = components
# smoothed should have exactly the same number of faces
if len(smooth.faces) != len(mesh.faces):
log.warning('face count in smooth wrong!')
return smooth
def is_watertight(edges, edges_sorted=None):
"""
Parameters
-----------
edges : (n, 2) int
List of vertex indices
edges_sorted : (n, 2) int
Pass vertex indices sorted on axis 1 as a speedup
Returns
---------
watertight : boolean
Whether every edge is shared by an even
number of faces
winding : boolean
Whether every shared edge is reversed
"""
# passing edges_sorted is a speedup only
if edges_sorted is None:
edges_sorted = np.sort(edges, axis=1)
# group sorted edges
groups = grouping.group_rows(
edges_sorted, require_count=2)
watertight = bool((len(groups) * 2) == len(edges))
# are opposing edges reversed
opposing = edges[groups].reshape((-1, 4))[:, 1:3].T
# wrap the weird numpy bool
winding = bool(np.equal(*opposing).all())
return watertight, winding
def graph_to_svg(graph):
"""
Turn a networkx graph into an SVG string
using graphviz `dot`.
Parameters
----------
graph: networkx graph
Returns
---------
svg: string, pictoral layout in SVG format
"""
import tempfile
import subprocess
with tempfile.NamedTemporaryFile() as dot_file:
nx.drawing.nx_agraph.write_dot(graph, dot_file.name)
svg = subprocess.check_output(['dot', dot_file.name, '-Tsvg'])
return svg
def multigraph_paths(G, source, cutoff=None):
"""
For a networkx MultiDiGraph, find all paths from a source node
to leaf nodes. This function returns edge instance numbers
in addition to nodes, unlike networkx.all_simple_paths.
Parameters
---------------
G : networkx.MultiDiGraph
Graph to evaluate
source : hashable
Node to start traversal at
cutoff : int
Number of nodes to visit
If None will visit all nodes
Returns
----------
traversals : (n,) list of [(node, edge instance index), ] paths
Traversals of the multigraph
"""
if cutoff is None:
cutoff = (len(G.edges()) * len(G.nodes())) + 1
# the path starts at the node specified
current = [(source, 0)]
# traversals we need to go back and do
queue = []
# completed paths
traversals = []
for i in range(cutoff):
# paths are stored as (node, instance) so
# get the node of the last place visited
current_node = current[-1][0]
# get all the children of the current node
child = G[current_node]
if len(child) == 0:
# we have no children, so we are at the end of this path
# save the path as a completed traversal
traversals.append(current)
# if there is nothing on the queue, we are done
if len(queue) == 0:
break
# otherwise continue traversing with the next path
# on the queue
current = queue.pop()
else:
# oh no, we have multiple edges from current -> child
start = True
# iterate through child nodes and edge instances
for node in child.keys():
for instance in child[node].keys():
if start:
# if this is the first edge, keep it on the
# current traversal and save the others for later
current.append((node, instance))
start = False
else:
# this child has multiple instances
# so we will need to traverse them multiple times
# we appended a node to current, so only take the
# first n-1 visits
queue.append(current[:-1] + [(node, instance)])
return traversals
def multigraph_collect(G, traversal, attrib=None):
"""
Given a MultiDiGraph traversal, collect attributes along it.
Parameters
-------------
G: networkx.MultiDiGraph
traversal: (n) list of (node, instance) tuples
attrib: dict key, name to collect. If None, will return all
Returns
-------------
collected: (len(traversal) - 1) list of attributes
"""
collected = []
for u, v in util.pairwise(traversal):
attribs = G[u[0]][v[0]][v[1]]
if attrib is None:
collected.append(attribs)
else:
collected.append(attribs[attrib])
return collected