forked from s_ranjbar/city_retrofit
57 lines
2.0 KiB
Plaintext
57 lines
2.0 KiB
Plaintext
Metadata-Version: 2.1
|
|
Name: numpy
|
|
Version: 1.18.5
|
|
Summary: NumPy is the fundamental package for array computing with Python.
|
|
Home-page: https://www.numpy.org
|
|
Author: Travis E. Oliphant et al.
|
|
Maintainer: NumPy Developers
|
|
Maintainer-email: numpy-discussion@python.org
|
|
License: BSD
|
|
Download-URL: https://pypi.python.org/pypi/numpy
|
|
Project-URL: Bug Tracker, https://github.com/numpy/numpy/issues
|
|
Project-URL: Documentation, https://docs.scipy.org/doc/numpy/
|
|
Project-URL: Source Code, https://github.com/numpy/numpy
|
|
Platform: Windows
|
|
Platform: Linux
|
|
Platform: Solaris
|
|
Platform: Mac OS-X
|
|
Platform: Unix
|
|
Classifier: Development Status :: 5 - Production/Stable
|
|
Classifier: Intended Audience :: Science/Research
|
|
Classifier: Intended Audience :: Developers
|
|
Classifier: License :: OSI Approved
|
|
Classifier: Programming Language :: C
|
|
Classifier: Programming Language :: Python
|
|
Classifier: Programming Language :: Python :: 3
|
|
Classifier: Programming Language :: Python :: 3.5
|
|
Classifier: Programming Language :: Python :: 3.6
|
|
Classifier: Programming Language :: Python :: 3.7
|
|
Classifier: Programming Language :: Python :: 3.8
|
|
Classifier: Programming Language :: Python :: 3 :: Only
|
|
Classifier: Programming Language :: Python :: Implementation :: CPython
|
|
Classifier: Topic :: Software Development
|
|
Classifier: Topic :: Scientific/Engineering
|
|
Classifier: Operating System :: Microsoft :: Windows
|
|
Classifier: Operating System :: POSIX
|
|
Classifier: Operating System :: Unix
|
|
Classifier: Operating System :: MacOS
|
|
Requires-Python: >=3.5
|
|
|
|
It provides:
|
|
|
|
- a powerful N-dimensional array object
|
|
- sophisticated (broadcasting) functions
|
|
- tools for integrating C/C++ and Fortran code
|
|
- useful linear algebra, Fourier transform, and random number capabilities
|
|
- and much more
|
|
|
|
Besides its obvious scientific uses, NumPy can also be used as an efficient
|
|
multi-dimensional container of generic data. Arbitrary data-types can be
|
|
defined. This allows NumPy to seamlessly and speedily integrate with a wide
|
|
variety of databases.
|
|
|
|
All NumPy wheels distributed on PyPI are BSD licensed.
|
|
|
|
|
|
|