city_retrofit/hub/imports/weather/helpers/weather.py

135 lines
5.3 KiB
Python

"""
weather helper
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import logging
import math
import calendar as cal
import pandas as pd
import numpy as np
import hub.helpers.constants as cte
class Weather:
"""
Weather class
"""
_epw_file = {
'CA.02.5935': 'https://energyplus-weather.s3.amazonaws.com/north_and_central_america_wmo_region_4/CAN/BC/CAN_BC_Summerland.717680_CWEC/CAN_BC_Summerland.717680_CWEC.epw',
'CA.10.06': 'https://energyplus-weather.s3.amazonaws.com/north_and_central_america_wmo_region_4/CAN/PQ/CAN_PQ_Montreal.Intl.AP.716270_CWEC/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw',
'CA.10.13': 'https://energyplus-weather.s3.amazonaws.com/north_and_central_america_wmo_region_4/CAN/PQ/CAN_PQ_Montreal.Intl.AP.716270_CWEC/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw',
'CA.10.14': 'https://energyplus-weather.s3.amazonaws.com/north_and_central_america_wmo_region_4/CAN/PQ/CAN_PQ_Montreal.Intl.AP.716270_CWEC/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw',
'CA.10.16': 'https://energyplus-weather.s3.amazonaws.com/north_and_central_america_wmo_region_4/CAN/PQ/CAN_PQ_Montreal.Intl.AP.716270_CWEC/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw',
'DE.01.082': 'https://energyplus-weather.s3.amazonaws.com/europe_wmo_region_6/DEU/DEU_Stuttgart.107380_IWEC/DEU_Stuttgart.107380_IWEC.epw',
'US.NY.047': 'https://energyplus-weather.s3.amazonaws.com/north_and_central_america_wmo_region_4/USA/NY/USA_NY_New.York.City-Central.Park.94728_TMY/USA_NY_New.York.City-Central.Park.94728_TMY.epw'
}
# todo: this dictionary need to be completed, a data science student task?
@staticmethod
def sky_temperature(ambient_temperature):
"""
Get sky temperature from ambient temperature in Celsius
:return: List[float]
"""
# Swinbank - Source sky model approximation(1963) based on cloudiness statistics(32 %) in the United States
# ambient temperatures( in °C)
# sky temperatures( in °C)
values = []
for temperature in ambient_temperature:
value = 0.037536 * math.pow((temperature + cte.KELVIN), 1.5) \
+ 0.32 * (temperature + cte.KELVIN) - cte.KELVIN
values.append(value)
return values
@staticmethod
def cold_water_temperature(ambient_temperature):
"""
Get cold water temperature from ambient temperature in Celsius
:return: dict
"""
# Equation from "TOWARDS DEVELOPMENT OF AN ALGORITHM FOR MAINS WATER TEMPERATURE", 2004, Jay Burch
# and Craig Christensen, National Renewable Energy Laboratory
# ambient temperatures( in °C)
# cold water temperatures( in °C)
ambient_temperature_fahrenheit = []
average_temperature = 0
maximum_temperature = -1000
minimum_temperature = 1000
for temperature in ambient_temperature:
value = temperature * 9 / 5 + 32
ambient_temperature_fahrenheit.append(value)
average_temperature += value / 8760
if value > maximum_temperature:
maximum_temperature = value
if value < minimum_temperature:
minimum_temperature = value
delta_temperature = maximum_temperature - minimum_temperature
ratio = 0.4 + 0.01 * (average_temperature - 44)
lag = 35 - 1 * (average_temperature - 44)
cold_temperature = []
for temperature in ambient_temperature_fahrenheit:
radians = (0.986 * (temperature-15-lag) - 90) * math.pi / 180
cold_temperature.append((average_temperature + 6 + ratio * (delta_temperature/2) * math.sin(radians) - 32) * 5/9)
return pd.DataFrame(cold_temperature, columns=['epw'])
def get_monthly_mean_values(self, values):
"""
Get the monthly mean for the given values
:return: float
"""
out = None
if values is not None:
if 'month' not in values.columns:
values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1)
out = values.groupby('month', as_index=False).mean()
del out['month']
return out
@staticmethod
def get_yearly_mean_values(values):
"""
Get the yearly mean for the given values
:return: float
"""
return values.mean()
def get_total_month(self, values):
"""
Get the total value the given values
:return: float
"""
out = None
if values is not None:
if 'month' not in values.columns:
values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1)
out = pd.DataFrame(values).groupby('month', as_index=False).sum()
del out['month']
return out
@property
def month_hour(self):
"""
returns a DataFrame that has x values of the month number (January = 1, February = 2...),
being x the number of hours of the corresponding month
:return: DataFrame(int)
"""
array = []
for i in range(0, 12):
days_of_month = cal.monthrange(2015, i+1)[1]
total_hours = days_of_month * 24
array = np.concatenate((array, np.full(total_hours, i + 1)))
return pd.DataFrame(array, columns=['month'])
def epw_file(self, region_code):
"""
returns the url for the weather file for the given location or default (Montreal data)
:return: str
"""
if region_code not in self._epw_file:
logging.warning('Specific weather data unknown for %s using Montreal data instead', region_code)
return self._epw_file['CA.10.06']
return self._epw_file[region_code]