city_retrofit/hub/unittests/test_results_import.py

112 lines
5.1 KiB
Python

"""
TestExports test and validate the city export formats
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import subprocess
from pathlib import Path
from unittest import TestCase
import pandas as pd
import hub.helpers.constants as cte
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
from hub.exports.exports_factory import ExportsFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.geometry_factory import GeometryFactory
from hub.imports.results_factory import ResultFactory
from hub.imports.usage_factory import UsageFactory
class TestResultsImport(TestCase):
"""
TestImports class contains the unittest for import functionality
"""
def setUp(self) -> None:
"""
Test setup
:return: None
"""
self._example_path = (Path(__file__).parent / 'tests_data').resolve()
self._gml_path = (self._example_path / 'FZK_Haus_LoD_2.gml').resolve()
self._output_path = (Path(__file__).parent / 'tests_outputs').resolve()
self._city = GeometryFactory('citygml',
self._gml_path,
function_to_hub=Dictionaries().alkis_function_to_hub_function).city
ConstructionFactory('nrcan', self._city).enrich()
UsageFactory('nrcan', self._city).enrich()
def test_sra_import(self):
weather_file = (self._example_path / 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw').resolve()
ExportsFactory('sra', self._city, self._output_path, weather_file=weather_file, weather_format='epw').export()
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
# Check that all the buildings have radiance in the surfaces
for building in self._city.buildings:
for surface in building.surfaces:
self.assertIsNotNone(surface.global_irradiance)
def test_meb_import(self):
weather_file = (self._example_path / 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw').resolve()
ExportsFactory('sra', self._city, self._output_path, weather_file=weather_file, weather_format='epw').export()
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', self._city, self._output_path).export()
for building in self._city.buildings:
insel_path = (self._output_path / f'{building.name}.insel')
subprocess.run(['insel', str(insel_path)])
ResultFactory('insel_monthly_energy_balance', self._city, self._output_path).enrich()
# Check that all the buildings have heating and cooling values
for building in self._city.buildings:
self.assertIsNotNone(building.heating[cte.MONTH][cte.INSEL_MEB])
self.assertIsNotNone(building.cooling[cte.MONTH][cte.INSEL_MEB])
self.assertIsNotNone(building.heating[cte.YEAR][cte.INSEL_MEB])
self.assertIsNotNone(building.cooling[cte.YEAR][cte.INSEL_MEB])
def test_peak_loads(self):
# todo: this is not technically a import
weather_file = (self._example_path / 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw').resolve()
ExportsFactory('sra', self._city, self._output_path, weather_file=weather_file, weather_format='epw').export()
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
for building in self._city.buildings:
self.assertIsNotNone(building.heating_peak_load)
self.assertIsNotNone(building.cooling_peak_load)
values = [0 for _ in range(8760)]
values[0] = 1000
expected_yearly = pd.DataFrame([1000], columns=['expected'])
expected_monthly_list = [0 for _ in range(12)]
expected_monthly_list[0] = 1000
expected_monthly = pd.DataFrame(expected_monthly_list, columns=['expected'])
for building in self._city.buildings:
building.heating[cte.HOUR] = pd.DataFrame(values, columns=['dummy'])
building.cooling[cte.HOUR] = pd.DataFrame(values, columns=['dummy'])
self.assertIsNotNone(building.heating_peak_load)
self.assertIsNotNone(building.cooling_peak_load)
pd.testing.assert_series_equal(
building.heating_peak_load[cte.YEAR]['heating peak loads'],
expected_yearly['expected'],
check_names=False
)
pd.testing.assert_series_equal(
building.cooling_peak_load[cte.YEAR]['cooling peak loads'],
expected_yearly['expected'],
check_names=False
)
pd.testing.assert_series_equal(
building.heating_peak_load[cte.MONTH]['heating peak loads'],
expected_monthly['expected'],
check_names=False
)
pd.testing.assert_series_equal(
building.cooling_peak_load[cte.MONTH]['cooling peak loads'],
expected_monthly['expected'],
check_names=False
)