2022-11-02 17:28:51 -04:00
|
|
|
"""
|
|
|
|
LifeCycleCosts calculates the life cycle costs of one building
|
|
|
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
|
|
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
|
2023-04-25 09:22:44 -04:00
|
|
|
Project contributor 2023 Author Oriol Gavaldà Torrellas oriol.gavalda@concordia.ca
|
2022-11-02 17:28:51 -04:00
|
|
|
"""
|
2023-04-26 16:26:06 -04:00
|
|
|
|
2023-04-25 18:33:09 -04:00
|
|
|
import math
|
2022-11-02 17:28:51 -04:00
|
|
|
|
|
|
|
|
|
|
|
class LifeCycleCosts:
|
|
|
|
# todo: this should be (city, costs_catalog) or similar
|
2023-04-26 16:26:06 -04:00
|
|
|
def __init__(self, building, archetype, number_of_years, consumer_price_index, discount_rate,
|
2023-04-25 09:22:44 -04:00
|
|
|
retrofitting_scenario):
|
2023-04-25 11:49:17 -04:00
|
|
|
self._building = building
|
2022-11-02 17:28:51 -04:00
|
|
|
self._number_of_years = number_of_years
|
|
|
|
self._consumer_price_index = consumer_price_index
|
|
|
|
self._discount_rate = discount_rate
|
2023-04-26 16:26:06 -04:00
|
|
|
self._archetype = archetype
|
2023-04-25 09:22:44 -04:00
|
|
|
self._end_of_life_cost = 0
|
|
|
|
self._capital_costs_at_year_0 = 0
|
|
|
|
self._items = 0
|
|
|
|
self._fuels = 0
|
|
|
|
self._concepts = 0
|
|
|
|
self._retrofitting_scenario = retrofitting_scenario
|
2022-11-02 17:28:51 -04:00
|
|
|
|
|
|
|
def calculate_capital_costs(self):
|
2023-04-25 11:49:17 -04:00
|
|
|
building = self._building
|
2023-04-26 16:26:06 -04:00
|
|
|
archetype = self._archetype
|
|
|
|
|
2023-04-25 11:49:17 -04:00
|
|
|
surface_opaque = 0
|
|
|
|
surface_transparent = 0
|
2023-04-25 18:33:09 -04:00
|
|
|
surface_roof = 0
|
|
|
|
surface_ground = 0
|
2023-04-26 16:26:06 -04:00
|
|
|
factor_pv = 0.5
|
|
|
|
factor_heating_power = 0.1 # kW/m2
|
|
|
|
factor_cooling_power = 0.1 # kW/m2
|
|
|
|
total_floor_area = 0
|
2023-04-25 11:49:17 -04:00
|
|
|
|
|
|
|
for internal_zone in building.internal_zones:
|
|
|
|
for thermal_zone in internal_zone.thermal_zones:
|
2023-04-26 16:26:06 -04:00
|
|
|
total_floor_area += thermal_zone.total_floor_area
|
2023-04-25 18:33:09 -04:00
|
|
|
print(total_floor_area)
|
2023-04-25 11:49:17 -04:00
|
|
|
for thermal_boundary in thermal_zone.thermal_boundaries:
|
2023-04-25 18:33:09 -04:00
|
|
|
if thermal_boundary.type == 'Ground':
|
|
|
|
surface_ground += thermal_boundary.opaque_area
|
|
|
|
elif thermal_boundary.type == 'Roof':
|
|
|
|
surface_roof += thermal_boundary.opaque_area
|
|
|
|
elif thermal_boundary.type == 'Wall':
|
|
|
|
surface_opaque += thermal_boundary.opaque_area * (1-thermal_boundary.window_ratio)
|
2023-04-25 11:49:17 -04:00
|
|
|
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
|
2023-04-25 18:33:09 -04:00
|
|
|
print(f'total floor area {total_floor_area}')
|
2023-04-25 11:49:17 -04:00
|
|
|
|
2023-04-25 18:33:09 -04:00
|
|
|
chapters = archetype.capital_cost
|
2023-04-26 16:26:06 -04:00
|
|
|
capital_cost_skin = 0
|
|
|
|
capital_cost_services = 0
|
2023-04-25 11:49:17 -04:00
|
|
|
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
|
|
|
|
chapter = chapters.chapter('B_shell')
|
|
|
|
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
|
|
|
|
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
|
2023-04-25 18:33:09 -04:00
|
|
|
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
|
|
|
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
|
|
|
|
capital_cost_skin= capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground
|
2023-04-26 16:26:06 -04:00
|
|
|
print(f'capital cost skin {capital_cost_skin}')
|
2023-04-25 18:33:09 -04:00
|
|
|
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
|
|
|
|
chapter = chapters.chapter('D_services')
|
|
|
|
capital_cost_pv = surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
|
2023-04-26 16:26:06 -04:00
|
|
|
reposition_cost_pv = 0
|
2023-04-25 21:00:19 -04:00
|
|
|
for year in range(1, self._number_of_years + 1):
|
|
|
|
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
|
|
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
|
2023-04-26 16:26:06 -04:00
|
|
|
reposition_cost_pv += surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').reposition[
|
2023-04-25 21:00:19 -04:00
|
|
|
0] * costs_increase
|
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
capital_cost_heating_equipment = total_floor_area * factor_heating_power \
|
|
|
|
* chapter.item('D3020_heat_generating_systems').initial_investment[0]
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
capital_cost_cooling_equipment = total_floor_area * factor_cooling_power \
|
|
|
|
* chapter.item('D3030_cooling_generation_systems').initial_investment[0]
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
capital_cost_distribution_equipment = total_floor_area * factor_cooling_power \
|
|
|
|
* chapter.item('D3040_distribution_systems').initial_investment[0]
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
capital_cost_other_hvac_ahu = total_floor_area * factor_cooling_power \
|
|
|
|
* chapter.item('D3080_other_hvac_ahu').initial_investment[0]
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
capital_cost_lighting = total_floor_area * factor_pv \
|
|
|
|
* chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
capital_cost_services = capital_cost_pv + capital_cost_heating_equipment + capital_cost_cooling_equipment\
|
|
|
|
+ capital_cost_distribution_equipment + capital_cost_other_hvac_ahu \
|
|
|
|
+ capital_cost_lighting
|
2023-04-25 11:49:17 -04:00
|
|
|
|
2023-04-25 21:00:19 -04:00
|
|
|
reposition_cost_heating_equipment = 0
|
|
|
|
reposition_cost_cooling_equipment = 0
|
|
|
|
reposition_cost_lighting = 0
|
|
|
|
reposition_cost_hvac_ahu = 0
|
2023-04-26 16:26:06 -04:00
|
|
|
reposition_cost_pv = 0
|
2023-04-25 21:00:19 -04:00
|
|
|
|
|
|
|
for year in range(1, self._number_of_years + 1):
|
|
|
|
chapter = chapters.chapter('D_services')
|
|
|
|
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
|
|
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
|
|
|
|
reposition_cost_heating_equipment = total_floor_area * factor_heating_power * \
|
|
|
|
chapter.item('D3020_heat_generating_systems').reposition[
|
|
|
|
0] * costs_increase
|
|
|
|
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
|
|
|
|
reposition_cost_cooling_equipment = total_floor_area * factor_cooling_power * \
|
|
|
|
chapter.item('D3030_cooling_generation_systems').reposition[
|
|
|
|
0] * costs_increase
|
|
|
|
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
|
|
|
|
reposition_cost_hvac_ahu = total_floor_area * factor_cooling_power * \
|
|
|
|
chapter.item('D3080_other_hvac_ahu').reposition[
|
|
|
|
0] * costs_increase
|
|
|
|
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
|
2023-04-26 16:26:06 -04:00
|
|
|
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
|
|
|
|
* costs_increase
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-04-25 18:33:09 -04:00
|
|
|
capital_cost_subtotal = capital_cost_skin + capital_cost_services
|
2023-04-25 11:49:17 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
capital_cost_total = capital_cost_subtotal * (1+chapters.design_allowance) * (1+chapters.overhead_and_profit)
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
reposition_cost_subtotal = reposition_cost_pv + reposition_cost_heating_equipment \
|
|
|
|
+ reposition_cost_cooling_equipment + reposition_cost_hvac_ahu \
|
|
|
|
+ reposition_cost_hvac_ahu + reposition_cost_lighting
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
reposition_cost_total = reposition_cost_subtotal * (1+chapters.design_allowance) * (1+chapters.overhead_and_profit)
|
2023-04-25 21:00:19 -04:00
|
|
|
|
|
|
|
life_cycle_cost_capital_total = capital_cost_total + reposition_cost_total
|
|
|
|
|
|
|
|
return life_cycle_cost_capital_total
|
2023-04-25 11:49:17 -04:00
|
|
|
|
2023-04-25 18:33:09 -04:00
|
|
|
def calculate_end_of_life_costs(self):
|
|
|
|
building = self._building
|
2023-04-26 16:26:06 -04:00
|
|
|
archetype = self._archetype
|
2023-04-25 09:22:44 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
total_floor_area = 0
|
2023-04-25 18:33:09 -04:00
|
|
|
|
|
|
|
for internal_zone in building.internal_zones:
|
|
|
|
for thermal_zone in internal_zone.thermal_zones:
|
|
|
|
total_floor_area += thermal_zone.total_floor_area
|
|
|
|
print(total_floor_area)
|
2022-11-02 17:28:51 -04:00
|
|
|
|
|
|
|
price_increase = 0
|
|
|
|
for year in range(1, self._number_of_years + 1):
|
|
|
|
price_increase += math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
2023-04-25 18:33:09 -04:00
|
|
|
price_increase_average = price_increase/self._number_of_years
|
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
return total_floor_area * archetype.end_of_life_cost*price_increase_average
|
2022-11-02 17:28:51 -04:00
|
|
|
|
|
|
|
def calculate_total_operational_costs(self):
|
2023-04-25 18:33:09 -04:00
|
|
|
building = self._building
|
2023-04-26 16:26:06 -04:00
|
|
|
archetype = self._archetype
|
2023-04-25 18:33:09 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
total_operational_costs = 0
|
|
|
|
peak_cost = 0
|
|
|
|
monthly_cost = 0
|
|
|
|
variable_cost = 0
|
|
|
|
total_floor_area = 0
|
2023-04-25 18:33:09 -04:00
|
|
|
|
|
|
|
for internal_zone in building.internal_zones:
|
|
|
|
for thermal_zone in internal_zone.thermal_zones:
|
|
|
|
total_floor_area += thermal_zone.total_floor_area
|
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
|
|
|
|
specific_heating_demand = 50
|
2023-04-25 18:33:09 -04:00
|
|
|
else:
|
2023-04-26 16:26:06 -04:00
|
|
|
specific_heating_demand = 190
|
2023-04-25 18:33:09 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
heating_demand = specific_heating_demand * total_floor_area
|
|
|
|
cooling_demand = 10 * total_floor_area
|
2023-04-25 18:33:09 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
|
|
|
|
heating_scop = 3
|
|
|
|
cooling_seer = 4.5
|
2023-04-25 18:33:09 -04:00
|
|
|
else:
|
2023-04-26 16:26:06 -04:00
|
|
|
heating_scop = 1
|
|
|
|
cooling_seer = 2
|
2023-04-25 18:33:09 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
electricity_heating = heating_demand/heating_scop
|
|
|
|
electricity_cooling = cooling_demand/cooling_seer
|
|
|
|
electricity_lighting = 11 * total_floor_area
|
|
|
|
electricity_plug_loads = 19 * total_floor_area
|
|
|
|
domestic_hot_water_demand = 50 * total_floor_area
|
2023-04-25 18:33:09 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
total_electricity_consumption = electricity_cooling + electricity_heating + electricity_lighting \
|
|
|
|
+ domestic_hot_water_demand + electricity_plug_loads
|
2023-04-25 18:33:09 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
peak_electricity_demand = 0.1 * total_floor_area
|
2023-04-25 18:33:09 -04:00
|
|
|
|
2023-04-26 16:26:06 -04:00
|
|
|
operational_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
|
|
|
peak_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
|
|
|
monthly_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * (total_floor_area/100)
|
2023-04-25 18:33:09 -04:00
|
|
|
print(f'operational_cost_year_0 {operational_cost_year_0}')
|
|
|
|
print(f'peak_cost_year_0 {peak_cost_year_0}')
|
|
|
|
print(f'monthly_cost_year_0 {monthly_cost_year_0}')
|
|
|
|
|
2022-11-02 17:28:51 -04:00
|
|
|
for year in range(1, self._number_of_years + 1):
|
2023-04-25 18:33:09 -04:00
|
|
|
peak_cost += operational_cost_year_0 \
|
2023-04-26 16:26:06 -04:00
|
|
|
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
|
|
monthly_cost += peak_cost_year_0 \
|
|
|
|
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
|
|
variable_cost += monthly_cost_year_0 \
|
|
|
|
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
2023-04-25 18:33:09 -04:00
|
|
|
total_operational_costs = peak_cost + monthly_cost + variable_cost
|
|
|
|
|
2022-11-02 17:28:51 -04:00
|
|
|
return total_operational_costs
|
|
|
|
|
|
|
|
def calculate_total_maintenance_costs(self):
|
2023-04-25 18:33:09 -04:00
|
|
|
building = self._building
|
2023-04-26 16:26:06 -04:00
|
|
|
archetype = self._archetype
|
2023-04-25 18:33:09 -04:00
|
|
|
total_floor_area = 0
|
|
|
|
|
|
|
|
factor_pv = 0.5
|
|
|
|
factor_heating_power = 0.1 # kW/m2
|
|
|
|
factor_cooling_power = 0.1 # kW/m2
|
|
|
|
surface_roof = 0
|
|
|
|
maintenance_pv = 0
|
|
|
|
maintenance_heating = 0
|
|
|
|
maintenance_cooling = 0
|
|
|
|
|
|
|
|
for internal_zone in building.internal_zones:
|
|
|
|
for thermal_zone in internal_zone.thermal_zones:
|
2023-04-26 16:26:06 -04:00
|
|
|
total_floor_area += thermal_zone.total_floor_area
|
2023-04-25 18:33:09 -04:00
|
|
|
for thermal_boundary in thermal_zone.thermal_boundaries:
|
|
|
|
if thermal_boundary.type == 'Roof':
|
|
|
|
surface_roof += thermal_boundary.opaque_area
|
|
|
|
surface_pv = surface_roof*factor_pv
|
2023-04-26 16:26:06 -04:00
|
|
|
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
|
|
|
maintenance_heating_0 = total_floor_area*factor_heating_power * archetype.operational_cost.maintenance_heating
|
|
|
|
maintenance_cooling_0 = total_floor_area*factor_cooling_power * archetype.operational_cost.maintenance_cooling
|
2022-11-02 17:28:51 -04:00
|
|
|
for year in range(1, self._number_of_years + 1):
|
|
|
|
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
2023-04-26 16:26:06 -04:00
|
|
|
maintenance_pv += maintenance_pv_0 * costs_increase
|
|
|
|
maintenance_heating += maintenance_heating_0 * costs_increase
|
|
|
|
maintenance_cooling += maintenance_cooling_0 * costs_increase
|
2023-04-25 18:33:09 -04:00
|
|
|
total_maintenance_costs = maintenance_pv + maintenance_heating + maintenance_cooling
|
|
|
|
return total_maintenance_costs
|