costs_workflow/costs/total_operational_costs.py

93 lines
4.1 KiB
Python
Raw Normal View History

2023-07-14 15:37:12 -04:00
"""
Total operational costs module
"""
import math
import pandas as pd
from hub.city_model_structure.building import Building
import hub.helpers.constants as cte
2023-07-17 14:35:12 -04:00
from costs.configuration import Configuration
2023-07-14 16:39:47 -04:00
from costs.cost_base import CostBase
2023-07-14 15:37:12 -04:00
2023-07-14 16:39:47 -04:00
class TotalOperationalCosts(CostBase):
2023-07-14 15:37:12 -04:00
"""
End of life costs class
"""
def __init__(self, building: Building, configuration: Configuration):
2023-07-14 16:39:47 -04:00
super().__init__(building, configuration)
2023-07-14 15:37:12 -04:00
self._yearly_operational_costs = pd.DataFrame(
2023-07-14 16:39:47 -04:00
index=self._rng,
2023-07-14 15:37:12 -04:00
columns=[
'Fixed_costs_electricity_peak',
'Fixed_costs_electricity_monthly',
'Variable_costs_electricity',
'Fixed_costs_gas',
'Variable_costs_gas'
],
dtype='float'
)
def calculate(self) -> pd.DataFrame:
"""
Calculate total operational costs
:return: pd.DataFrame
"""
building = self._building
archetype = self._archetype
total_floor_area = self._total_floor_area
factor_residential = total_floor_area / 80
# todo: split the heating between fuels
fixed_gas_cost_year_0 = 0
variable_gas_cost_year_0 = 0
electricity_heating = 0
domestic_hot_water_electricity = 0
if self._configuration.fuel_type == 1:
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly * 12 * factor_residential
variable_gas_cost_year_0 = (
(building.heating_consumption[cte.YEAR][0] + building.domestic_hot_water_consumption[cte.YEAR][0]) / 1000 *
archetype.operational_cost.fuels[1].variable[0]
)
if self._configuration.fuel_type == 0:
electricity_heating = building.heating_consumption[cte.YEAR][0] / 1000
domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / 1000
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000
electricity_distribution = 0
total_electricity_consumption = (
electricity_heating + electricity_cooling + electricity_lighting + domestic_hot_water_electricity +
electricity_plug_loads + electricity_distribution
)
# todo: change when peak electricity demand is coded. Careful with factor residential
peak_electricity_demand = 100 # self._peak_electricity_demand
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
for year in range(1, self._configuration.number_of_years + 1):
price_increase_electricity = math.pow(1 + self._configuration.electricity_price_index, year)
price_increase_peak_electricity = math.pow(1 + self._configuration.electricity_peak_index, year)
price_increase_gas = math.pow(1 + self._configuration.gas_price_index, year)
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = (
peak_electricity_cost_year_0 * price_increase_peak_electricity
)
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = (
monthly_electricity_cost_year_0 * price_increase_peak_electricity
)
2023-07-17 16:36:39 -04:00
self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = (
float(variable_electricity_cost_year_0.iloc[0] * price_increase_electricity)
2023-07-14 15:37:12 -04:00
)
self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * price_increase_gas
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
variable_gas_cost_year_0 * price_increase_peak_electricity
)
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
variable_gas_cost_year_0 * price_increase_peak_electricity
)
self._yearly_operational_costs.fillna(0, inplace=True)
return self._yearly_operational_costs