From 3a7ecb2472df2d3d27374d013f1013e6b3756a40 Mon Sep 17 00:00:00 2001 From: Guille Date: Tue, 30 May 2023 14:42:49 -0400 Subject: [PATCH] bug correction --- life_cycle_costs.py | 171 +++++++++++++++++++++++--------------------- main.py | 19 +++-- resources.txt | 1 + 3 files changed, 97 insertions(+), 94 deletions(-) create mode 100644 resources.txt diff --git a/life_cycle_costs.py b/life_cycle_costs.py index a958e2c..a13504f 100644 --- a/life_cycle_costs.py +++ b/life_cycle_costs.py @@ -15,8 +15,8 @@ import hub.helpers.constants as cte class LifeCycleCosts: def __init__(self, building, archetype, number_of_years, consumer_price_index, electricity_peak_index, - electricity_price_index, gas_price_index, discount_rate, - retrofitting_scenario,fuel_type): + electricity_price_index, gas_price_index, discount_rate, + retrofitting_scenario, fuel_type): self._building = building self._number_of_years = number_of_years self._consumer_price_index = consumer_price_index @@ -34,26 +34,29 @@ class LifeCycleCosts: self._total_floor_area = 0 self._fuel_type = fuel_type for internal_zone in building.internal_zones: - for thermal_zone in internal_zone.thermal_zones: - self._total_floor_area += thermal_zone.total_floor_area + for thermal_zone in internal_zone.thermal_zones: + self._total_floor_area += thermal_zone.total_floor_area - #todo: revise if it works + # todo: revise if it works rng = range(number_of_years) self._yearly_capital_costs = pd.DataFrame(index=rng, columns=['B2010_opaque_walls', 'B2020_transparent', - 'B3010_opaque_roof','B10_superstructure', - 'D301010_photovoltaic_system','D3020_heat_generating_systems', - 'D3030_cooling_generation_systems','D3040_distribution_systems', - 'D3080_other_hvac_ahu','D5020_lighting_and_branch_wiring'], + 'B3010_opaque_roof', 'B10_superstructure', + 'D301010_photovoltaic_system', + 'D3020_heat_generating_systems', + 'D3030_cooling_generation_systems', + 'D3040_distribution_systems', + 'D3080_other_hvac_ahu', + 'D5020_lighting_and_branch_wiring'], dtype='float') self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float') self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak', 'Fixed_costs_electricity_monthly', - 'Variable_costs_electricity','Fixed_costs_gas', + 'Variable_costs_electricity', 'Fixed_costs_gas', 'Variable_costs_gas'], dtype='float') - self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance','Cooling_maintenance', + self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance', 'Cooling_maintenance', 'PV_maintenance'], dtype='float') - self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'],dtype='float') + self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'], dtype='float') def calculate_capital_costs(self): building = self._building @@ -66,15 +69,15 @@ class LifeCycleCosts: total_floor_area = self._total_floor_area for internal_zone in building.internal_zones: - for thermal_zone in internal_zone.thermal_zones: - for thermal_boundary in thermal_zone.thermal_boundaries: - if thermal_boundary.type == 'Ground': - surface_ground += thermal_boundary.opaque_area - elif thermal_boundary.type == 'Roof': - surface_roof += thermal_boundary.opaque_area - elif thermal_boundary.type == 'Wall': - surface_opaque += thermal_boundary.opaque_area * (1-thermal_boundary.window_ratio) - surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio + for thermal_zone in internal_zone.thermal_zones: + for thermal_boundary in thermal_zone.thermal_boundaries: + if thermal_boundary.type == 'Ground': + surface_ground += thermal_boundary.opaque_area + elif thermal_boundary.type == 'Roof': + surface_roof += thermal_boundary.opaque_area + elif thermal_boundary.type == 'Wall': + surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio) + surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio chapters = archetype.capital_cost capital_cost_skin = 0 @@ -83,8 +86,8 @@ class LifeCycleCosts: peak_heating = building.heating_peak_load[cte.YEAR].values[0] peak_cooling = building.cooling_peak_load[cte.YEAR].values[0] - #todo: put the value of area_pv when it exists - surface_pv = 10 #building.area_pv + # todo: put the value of area_pv when it exists + surface_pv = 10 # building.area_pv self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'], self._yearly_capital_costs.loc[0]['B2020_transparent'], \ self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'], self._yearly_capital_costs.loc[0]['B10_superstructure'], \ self._yearly_capital_costs.loc[0, 'B_Shell'] \ @@ -95,21 +98,20 @@ class LifeCycleCosts: self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'], \ self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] \ = [0, 0, 0, 0, 0] - self._yearly_capital_costs.fillna(0,inplace=True) + self._yearly_capital_costs.fillna(0, inplace=True) if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3: chapter = chapters.chapter('B_shell') capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0] capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0] capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0] capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0] - capital_cost_skin = capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground - self._yearly_capital_costs.loc[0,'B2010_opaque_walls'],self._yearly_capital_costs.loc[0]['B2020_transparent'], \ - self._yearly_capital_costs.loc[0,'B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\ - self._yearly_capital_costs.loc[0,'B_Shell']\ - =[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin] + capital_cost_skin = capital_cost_opaque + capital_cost_transparent + capital_cost_roof + capital_cost_ground + self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'], self._yearly_capital_costs.loc[0]['B2020_transparent'], \ + self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'], self._yearly_capital_costs.loc[0]['B10_superstructure'], \ + self._yearly_capital_costs.loc[0, 'B_Shell'] \ + = [capital_cost_opaque, capital_cost_transparent, capital_cost_roof, capital_cost_ground, capital_cost_skin] if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3: - chapter = chapters.chapter('D_services') capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0] @@ -126,11 +128,11 @@ class LifeCycleCosts: capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0] - self._yearly_capital_costs.loc[0,'D3020_heat_generating_systems'], \ - self._yearly_capital_costs.loc[0,'D3030_cooling_generation_systems'], \ - self._yearly_capital_costs.loc[0,'D3040_distribution_systems'], \ - self._yearly_capital_costs.loc[0,'D3080_other_hvac_ahu'], \ - self._yearly_capital_costs.loc[0,'D5020_lighting_and_branch_wiring']\ + self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'], \ + self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'], \ + self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'], \ + self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'], \ + self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] \ = [capital_cost_heating_equipment, capital_cost_cooling_equipment, capital_cost_distribution_equipment, capital_cost_other_hvac_ahu, capital_cost_lighting] for year in range(1, self._number_of_years): @@ -140,27 +142,28 @@ class LifeCycleCosts: if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0: reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \ * costs_increase - self._yearly_capital_costs.loc[year,'D3020_heat_generating_systems'] = reposition_cost_heating_equipment + self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] = reposition_cost_heating_equipment if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0: reposition_cost_cooling_equipment = peak_cooling \ * chapter.item('D3030_cooling_generation_systems').reposition[0] \ * costs_increase - self._yearly_capital_costs.loc[year,'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment + self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0: reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase - self._yearly_capital_costs.loc[year,'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu + self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0: reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \ * costs_increase - self._yearly_capital_costs.loc[year,'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting + self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting - if self._retrofitting_scenario==2 or self._retrofitting_scenario==3 : + if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3: if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0: self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv \ - * chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase + * chapter.item( + 'D301010_photovoltaic_system').reposition[0] * costs_increase return self._yearly_capital_costs def calculate_end_of_life_costs(self): @@ -171,8 +174,9 @@ class LifeCycleCosts: for year in range(1, self._number_of_years + 1): price_increase += math.pow(1 + self._consumer_price_index, year) if year == self._number_of_years: - self._yearly_end_of_life_costs.at[year,'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost*price_increase - self._yearly_end_of_life_costs.fillna(0,inplace=True) + self._yearly_end_of_life_costs.at[ + year, 'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost * price_increase + self._yearly_end_of_life_costs.fillna(0, inplace=True) return self._yearly_end_of_life_costs def calculate_total_operational_costs(self): @@ -180,14 +184,14 @@ class LifeCycleCosts: archetype = self._archetype total_floor_area = self._total_floor_area factor_residential = total_floor_area / 80 - #todo: split the heating between fuels + # todo: split the heating between fuels fixed_gas_cost_year_0 = 0 variable_gas_cost_year_0 = 0 electricity_heating = 0 domestic_hot_water_electricity = 0 if self._fuel_type == 1: fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly - variable_gas_cost_year_0 = (building.heating_consumption[cte.YEAR][0]+ + variable_gas_cost_year_0 = (building.heating_consumption[cte.YEAR][0] + building.domestic_hot_water_consumption[cte.YEAR][0]) / (1000) * \ archetype.operational_cost.fuels[1].variable[0] if self._fuel_type == 0: @@ -195,13 +199,13 @@ class LifeCycleCosts: domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000 electricity_cooling = building.cooling_consumption[cte.YEAR][0] / (1000) - electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb']/1000 - electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb']/1000 - electricity_distribution = 0 #building.distribution_systems_electrical_consumption[cte.YEAR][0]/1000 + electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000 + electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000 + electricity_distribution = 0 # building.distribution_systems_electrical_consumption[cte.YEAR][0]/1000 total_electricity_consumption = electricity_heating + electricity_cooling + electricity_lighting + \ domestic_hot_water_electricity + electricity_plug_loads + electricity_distribution - #todo: change when peak electricity demand is coded. Careful with factor residential - peak_electricity_demand = 100 #self._peak_electricity_demand + # todo: change when peak electricity demand is coded. Careful with factor residential + peak_electricity_demand = 100 # self._peak_electricity_demand variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0] peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12 @@ -214,64 +218,65 @@ class LifeCycleCosts: price_increase_electricity += math.pow(1 + self._electricity_price_index, year) price_increase_peak_electricity += math.pow(1 + self._electricity_peak_index, year) price_increase_gas += math.pow(1 + self._gas_price_index, year) - self._yearly_operational_costs.at[year,'Fixed_costs_electricity_peak']=peak_electricity_cost_year_0*\ - price_increase_peak_electricity + self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = peak_electricity_cost_year_0 * \ + price_increase_peak_electricity - self._yearly_operational_costs.at[year,'Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \ - price_increase_peak_electricity - self._yearly_operational_costs.at[year,'Variable_costs_electricity'] = variable_electricity_cost_year_0 * \ - price_increase_electricity - self._yearly_operational_costs.at[year,'Fixed_costs_gas'] = fixed_gas_cost_year_0 * \ - price_increase_gas - self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0* \ - price_increase_peak_electricity - self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0 * \ - price_increase_peak_electricity - self._yearly_operational_costs.fillna(0,inplace=True) + self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \ + price_increase_peak_electricity + self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = float( + variable_electricity_cost_year_0 * price_increase_electricity + ) + self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * \ + price_increase_gas + self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = variable_gas_cost_year_0 * \ + price_increase_peak_electricity + self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = variable_gas_cost_year_0 * \ + price_increase_peak_electricity + self._yearly_operational_costs.fillna(0, inplace=True) return self._yearly_operational_costs def calculate_total_operational_incomes(self): building = self._building archetype = self._archetype - - if (building.onsite_electrical_production is None): + if cte.YEAR not in building.onsite_electrical_production: onsite_electricity_production = 0 else: - onsite_electricity_production= 100 #building.onsite_electrical_production[cte.YEAR]/1000 - + onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000 price_increase_electricity = 0 for year in range(1, self._number_of_years + 1): price_increase_electricity += math.pow(1 + self._electricity_price_index, year) - self._yearly_operational_incomes.loc[year,'Incomes electricity']=onsite_electricity_production*\ - price_increase_electricity + self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = onsite_electricity_production * \ + price_increase_electricity - self._yearly_operational_incomes.fillna(0,inplace=True) + self._yearly_operational_incomes.fillna(0, inplace=True) return self._yearly_operational_incomes def calculate_total_maintenance_costs(self): building = self._building archetype = self._archetype - #todo: change area pv when the variable exists - surface_pv = 10 #building.area_pv + # todo: change area pv when the variable exists + roof_area = 0 + for roof in building.roofs: + roof_area += roof.solid_polygon.area + surface_pv = roof_area * 0.5 - peak_heating = 100#building.heating_peak_load[cte.YEAR][0] - peak_cooling = 100#building.cooling_peak_load[cte.YEAR][0] + peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0] + peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0] maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv - print(f'peak_heating{peak_heating}') - print(f'maintenance_cost{archetype.operational_cost.maintenance_heating}') + for year in range(1, self._number_of_years + 1): costs_increase = math.pow(1 + self._consumer_price_index, year) - self._yearly_maintenance_costs.loc[year,'Heating_maintenance'] = maintenance_heating_0 * \ - costs_increase - self._yearly_maintenance_costs.loc[year,'Cooling_maintenance'] = maintenance_cooling_0 * \ - costs_increase - self._yearly_maintenance_costs.loc[year,'PV_maintenance'] = maintenance_pv_0 * \ - costs_increase - self._yearly_maintenance_costs.fillna(0,inplace=True) + self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = maintenance_heating_0 * \ + costs_increase + self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = maintenance_cooling_0 * \ + costs_increase + self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = maintenance_pv_0 * \ + costs_increase + self._yearly_maintenance_costs.fillna(0, inplace=True) return self._yearly_maintenance_costs diff --git a/main.py b/main.py index 3b6a8d5..15ce7e9 100644 --- a/main.py +++ b/main.py @@ -7,25 +7,23 @@ Copyright © 2022 Project Author Pilar Monsalvete Álvarez de Uribarri pilar.mon import glob import os from pathlib import Path -import sys -import pandas as pd + import numpy_financial as npf - - -from hub.imports.construction_factory import ConstructionFactory +import pandas as pd +from energy_systems_sizing import EnergySystemsSizing +from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory from hub.helpers.dictionaries import Dictionaries +from hub.imports.construction_factory import ConstructionFactory +from hub.imports.energy_systems_factory import EnergySystemsFactory from hub.imports.geometry_factory import GeometryFactory from hub.imports.usage_factory import UsageFactory from hub.imports.weather_factory import WeatherFactory -from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory -import hub.helpers.constants as cte from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine from sra_engine import SraEngine -from hub.imports.energy_systems_factory import EnergySystemsFactory -from energy_systems_sizing import EnergySystemsSizing from life_cycle_costs import LifeCycleCosts + def _npv_from_list(npv_discount_rate, list_cashflow): lcc_value = npf.npv(npv_discount_rate, list_cashflow) return lcc_value @@ -188,6 +186,5 @@ for retrofitting_scenario in retrofitting_scenarios: print(life_cycle_results) print(f'Scenario {retrofitting_scenario} {life_cycle_costs}') -#todo: change if there is more than 1 building -life_cycle_results.to_excel(Path(__file__).parent/'out_files'/f'Results.xlsx', index=True) + diff --git a/resources.txt b/resources.txt new file mode 100644 index 0000000..32ed54c --- /dev/null +++ b/resources.txt @@ -0,0 +1 @@ +numpy_financial \ No newline at end of file