Full structure developed, with outputs as pandas dataframes
This commit is contained in:
parent
c283f3a3e3
commit
520f0ee7a9
|
@ -14,11 +14,15 @@ import hub.helpers.constants as cte
|
||||||
|
|
||||||
|
|
||||||
class LifeCycleCosts:
|
class LifeCycleCosts:
|
||||||
def __init__(self, building, archetype, number_of_years, consumer_price_index, discount_rate,
|
def __init__(self, building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
|
||||||
|
electricity_price_index, gas_price_index, discount_rate,
|
||||||
retrofitting_scenario):
|
retrofitting_scenario):
|
||||||
self._building = building
|
self._building = building
|
||||||
self._number_of_years = number_of_years
|
self._number_of_years = number_of_years
|
||||||
self._consumer_price_index = consumer_price_index
|
self._consumer_price_index = consumer_price_index
|
||||||
|
self._electricity_peak_index = electricity_peak_index
|
||||||
|
self._electricity_price_index = electricity_price_index
|
||||||
|
self._gas_price_index = gas_price_index
|
||||||
self._discount_rate = discount_rate
|
self._discount_rate = discount_rate
|
||||||
self._archetype = archetype
|
self._archetype = archetype
|
||||||
self._end_of_life_cost = 0
|
self._end_of_life_cost = 0
|
||||||
|
@ -38,9 +42,20 @@ class LifeCycleCosts:
|
||||||
'B3010_opaque_roof','B10_superstructure',
|
'B3010_opaque_roof','B10_superstructure',
|
||||||
'D301010_photovoltaic_system','D3020_heat_generating_systems',
|
'D301010_photovoltaic_system','D3020_heat_generating_systems',
|
||||||
'D3030_cooling_generation_systems','D3040_distribution_systems',
|
'D3030_cooling_generation_systems','D3040_distribution_systems',
|
||||||
'D3080_other_hvac_ahu','D5020_lighting_and_branch_wiring',
|
'D3080_other_hvac_ahu','D5020_lighting_and_branch_wiring'],
|
||||||
'D_services'], dtype='float')
|
dtype='float')
|
||||||
self._yearly_capital_costs.replace(np.nan, 0)
|
self._yearly_capital_costs.replace(np.nan, 0)
|
||||||
|
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
|
||||||
|
self._yearly_end_of_life_costs.replace(np.nan, 0)
|
||||||
|
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
|
||||||
|
'Fixed_costs_electricity_monthly',
|
||||||
|
'Variable_costs_electricity','Fixed_costs_gas',
|
||||||
|
'Variable_costs_gas','Heating_maintenance',
|
||||||
|
'Cooling_maintenance','PV_maintenance'],
|
||||||
|
dtype='float')
|
||||||
|
self._yearly_operational_costs.replace(np.nan, 0)
|
||||||
|
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'],dtype='float')
|
||||||
|
self._yearly_operational_incomes.replace(np.nan, 0)
|
||||||
|
|
||||||
def calculate_capital_costs(self):
|
def calculate_capital_costs(self):
|
||||||
building = self._building
|
building = self._building
|
||||||
|
@ -66,7 +81,7 @@ class LifeCycleCosts:
|
||||||
chapters = archetype.capital_cost
|
chapters = archetype.capital_cost
|
||||||
capital_cost_skin = 0
|
capital_cost_skin = 0
|
||||||
capital_cost_services = 0
|
capital_cost_services = 0
|
||||||
reposition_cost_pv = 0
|
capital_cost_pv = 0
|
||||||
|
|
||||||
peak_heating = building.heating_peak_load[cte.YEAR].values[0]
|
peak_heating = building.heating_peak_load[cte.YEAR].values[0]
|
||||||
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]
|
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]
|
||||||
|
@ -86,16 +101,13 @@ class LifeCycleCosts:
|
||||||
=[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin]
|
=[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin]
|
||||||
|
|
||||||
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
|
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
|
||||||
|
|
||||||
chapter = chapters.chapter('D_services')
|
chapter = chapters.chapter('D_services')
|
||||||
|
|
||||||
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
|
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
|
||||||
|
|
||||||
self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system'] = capital_cost_pv
|
self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system'] = capital_cost_pv
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
||||||
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
|
|
||||||
reposition_cost_pv += surface_pv * chapter.item('D301010_photovoltaic_system').reposition[
|
|
||||||
0] * costs_increase
|
|
||||||
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv\
|
|
||||||
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
|
|
||||||
capital_cost_heating_equipment = peak_heating \
|
capital_cost_heating_equipment = peak_heating \
|
||||||
* chapter.item('D3020_heat_generating_systems').initial_investment[0]
|
* chapter.item('D3020_heat_generating_systems').initial_investment[0]
|
||||||
capital_cost_cooling_equipment = peak_cooling \
|
capital_cost_cooling_equipment = peak_cooling \
|
||||||
|
@ -107,15 +119,13 @@ class LifeCycleCosts:
|
||||||
capital_cost_lighting = total_floor_area * self._peak_lights \
|
capital_cost_lighting = total_floor_area * self._peak_lights \
|
||||||
* chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
* chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
||||||
|
|
||||||
capital_cost_services = capital_cost_pv + capital_cost_heating_equipment + capital_cost_cooling_equipment\
|
self._yearly_capital_costs.loc[0]['D3020_heat_generating_systems'], \
|
||||||
+ capital_cost_distribution_equipment + capital_cost_other_hvac_ahu \
|
self._yearly_capital_costs.loc[0]['D3030_cooling_generation_systems'], \
|
||||||
+ capital_cost_lighting
|
self._yearly_capital_costs.loc[0]['D3040_distribution_systems'], \
|
||||||
|
self._yearly_capital_costs.loc[0]['D3080_other_hvac_ahu'], \
|
||||||
self._yearly_capital_costs.loc[0]['D3020_heat_generating_systems'], self._yearly_capital_costs.loc[0]['D3030_cooling_generation_systems'], \
|
self._yearly_capital_costs.loc[0]['D5020_lighting_and_branch_wiring']\
|
||||||
self._yearly_capital_costs.loc[0]['D3040_distribution_systems'], self._yearly_capital_costs.loc[0]['D3080_other_hvac_ahu'], \
|
|
||||||
self._yearly_capital_costs.loc[0]['D5020_lighting_and_branch_wiring'], self._yearly_capital_costs.loc[0]['D_services'] \
|
|
||||||
= [capital_cost_heating_equipment, capital_cost_cooling_equipment, capital_cost_distribution_equipment,
|
= [capital_cost_heating_equipment, capital_cost_cooling_equipment, capital_cost_distribution_equipment,
|
||||||
capital_cost_other_hvac_ahu, capital_cost_lighting, capital_cost_services]
|
capital_cost_other_hvac_ahu, capital_cost_lighting]
|
||||||
|
|
||||||
reposition_cost_heating_equipment = 0
|
reposition_cost_heating_equipment = 0
|
||||||
reposition_cost_cooling_equipment = 0
|
reposition_cost_cooling_equipment = 0
|
||||||
|
@ -146,19 +156,12 @@ class LifeCycleCosts:
|
||||||
* costs_increase
|
* costs_increase
|
||||||
self._yearly_capital_costs.loc[year]['D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
|
self._yearly_capital_costs.loc[year]['D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
|
||||||
|
|
||||||
capital_cost_subtotal = capital_cost_skin + capital_cost_services
|
if self._retrofitting_scenario==2 or self._retrofitting_scenario==3 :
|
||||||
|
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
|
||||||
|
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv\
|
||||||
|
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
|
||||||
|
|
||||||
capital_cost_total = capital_cost_subtotal * (1+chapters.design_allowance) * (1+chapters.overhead_and_profit)
|
return self._yearly_capital_costs
|
||||||
|
|
||||||
reposition_cost_subtotal = reposition_cost_pv + reposition_cost_heating_equipment \
|
|
||||||
+ reposition_cost_cooling_equipment + reposition_cost_hvac_ahu \
|
|
||||||
+ reposition_cost_hvac_ahu + reposition_cost_lighting
|
|
||||||
|
|
||||||
reposition_cost_total = reposition_cost_subtotal * (1+chapters.design_allowance) * (1+chapters.overhead_and_profit)
|
|
||||||
|
|
||||||
life_cycle_cost_capital_total = capital_cost_total + reposition_cost_total
|
|
||||||
|
|
||||||
return life_cycle_cost_capital_total, self._yearly_capital_costs
|
|
||||||
|
|
||||||
def calculate_end_of_life_costs(self):
|
def calculate_end_of_life_costs(self):
|
||||||
archetype = self._archetype
|
archetype = self._archetype
|
||||||
|
@ -167,10 +170,10 @@ class LifeCycleCosts:
|
||||||
|
|
||||||
price_increase = 0
|
price_increase = 0
|
||||||
for year in range(1, self._number_of_years + 1):
|
for year in range(1, self._number_of_years + 1):
|
||||||
price_increase += math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
price_increase += math.pow(1 + self._consumer_price_index, year)
|
||||||
price_increase_average = price_increase/self._number_of_years
|
if year == self._number_of_years:
|
||||||
|
self._end_of_life_cost = total_floor_area * archetype.end_of_life_cost*price_increase
|
||||||
return total_floor_area * archetype.end_of_life_cost*price_increase_average
|
return self._end_of_life_cost
|
||||||
|
|
||||||
def calculate_total_operational_costs(self):
|
def calculate_total_operational_costs(self):
|
||||||
building = self._building
|
building = self._building
|
||||||
|
@ -187,54 +190,95 @@ class LifeCycleCosts:
|
||||||
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb']/1000
|
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb']/1000
|
||||||
domestic_hot_water_demand = building.domestic_hot_water_consumption[cte.YEAR][0]/1000
|
domestic_hot_water_demand = building.domestic_hot_water_consumption[cte.YEAR][0]/1000
|
||||||
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb']/1000
|
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb']/1000
|
||||||
|
|
||||||
if (building.onsite_electrical_production[cte.YEAR][0] is None):
|
if (building.onsite_electrical_production[cte.YEAR][0] is None):
|
||||||
onsite_electricity_production = 0
|
onsite_electricity_production = 0
|
||||||
else:
|
else:
|
||||||
onsite_electricity_production= building.onsite_electrical_production[cte.YEAR][0]/1000
|
onsite_electricity_production= building.onsite_electrical_production[cte.YEAR][0]/1000
|
||||||
|
|
||||||
total_electricity_consumption = electricity_cooling + electricity_heating + electricity_lighting \
|
total_electricity_consumption = electricity_cooling + electricity_heating + electricity_lighting \
|
||||||
+ domestic_hot_water_demand + electricity_plug_loads
|
+ domestic_hot_water_demand + electricity_plug_loads
|
||||||
|
|
||||||
print(f'total electricity consumption: {total_electricity_consumption}')
|
print(f'total electricity consumption: {total_electricity_consumption}')
|
||||||
print(f'total electricity production: {onsite_electricity_production}')
|
print(f'total electricity production: {onsite_electricity_production}')
|
||||||
|
|
||||||
#todo: change when peak electricity demand is coded
|
#todo: change when peak electricity demand is coded. Careful with factor residential
|
||||||
peak_electricity_demand = 100 #self._peak_electricity_demand
|
peak_electricity_demand = 100 #self._peak_electricity_demand
|
||||||
operational_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
factor_residential= total_floor_area/80
|
||||||
peak_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
||||||
monthly_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * (total_floor_area/100)
|
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
||||||
incomes_year_0 = onsite_electricity_production * archetype.operational_cost.fuels[0].variable[0]
|
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
|
||||||
|
incomes_electricity_year_0 = onsite_electricity_production * archetype.operational_cost.fuels[0].variable[0]
|
||||||
|
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly*12* factor_residential
|
||||||
|
variable_gas_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[1].variable[0]
|
||||||
|
|
||||||
|
price_increase_electricity = 0
|
||||||
|
price_increase_peak_electricity = 0
|
||||||
|
price_increase_gas = 0
|
||||||
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
for year in range(1, self._number_of_years + 1):
|
||||||
peak_cost += operational_cost_year_0 \
|
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
|
||||||
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
price_increase_peak_electricity += math.pow(1 + self._electricity_peak_index, year)
|
||||||
monthly_cost += peak_cost_year_0 \
|
price_increase_gas += math.pow(1 + self._gas_price_index, year)
|
||||||
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
||||||
variable_cost += monthly_cost_year_0 \
|
|
||||||
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
||||||
variable_incomes += incomes_year_0 \
|
|
||||||
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
||||||
total_operational_costs = peak_cost + monthly_cost + variable_cost - variable_incomes
|
|
||||||
|
|
||||||
return total_operational_costs
|
self._yearly_operational_costs[year]['Fixed_costs_electricity_peak']=peak_electricity_cost_year_0*\
|
||||||
|
price_increase_peak_electricity
|
||||||
|
self._yearly_operational_costs[year]['Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
|
||||||
|
price_increase_peak_electricity
|
||||||
|
self._yearly_operational_costs[year]['Variable_costs_electricity'] = variable_electricity_cost_year_0 * \
|
||||||
|
price_increase_electricity
|
||||||
|
self._yearly_operational_costs[year]['Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
|
||||||
|
price_increase_gas
|
||||||
|
self._yearly_operational_costs[year]['Variable_costs_gas'] = variable_gas_cost_year_0* \
|
||||||
|
price_increase_peak_electricity
|
||||||
|
self._yearly_operational_costs[year]['Variable_costs_gas'] = variable_gas_cost_year_0 * \
|
||||||
|
price_increase_peak_electricity
|
||||||
|
|
||||||
|
|
||||||
|
return self._yearly_operational_costs
|
||||||
|
|
||||||
|
def calculate_total_operational_incomes(self):
|
||||||
|
building = self._building
|
||||||
|
archetype = self._archetype
|
||||||
|
variable_incomes = 0
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
|
||||||
|
if (building.onsite_electrical_production[cte.YEAR][0] is None):
|
||||||
|
onsite_electricity_production = 0
|
||||||
|
else:
|
||||||
|
onsite_electricity_production= building.onsite_electrical_production[cte.YEAR][0]/1000
|
||||||
|
|
||||||
|
incomes_electricity_year_0 = onsite_electricity_production * archetype.operational_cost.fuels[0].variable[0]
|
||||||
|
|
||||||
|
price_increase_electricity = 0
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
|
||||||
|
|
||||||
|
self._yearly_operational_incomes[year]['Incomes electricity']=onsite_electricity_production*\
|
||||||
|
price_increase_electricity
|
||||||
|
|
||||||
|
return self._yearly_operational_incomes
|
||||||
|
|
||||||
def calculate_total_maintenance_costs(self):
|
def calculate_total_maintenance_costs(self):
|
||||||
building = self._building
|
building = self._building
|
||||||
archetype = self._archetype
|
archetype = self._archetype
|
||||||
#todo: change area pv when the variable exists
|
#todo: change area pv when the variable exists
|
||||||
surface_pv = 10 #building.area_pv
|
surface_pv = 10 #building.area_pv
|
||||||
maintenance_pv = 0
|
|
||||||
maintenance_heating = 0
|
|
||||||
maintenance_cooling = 0
|
|
||||||
peak_heating = building.heating_peak_load
|
peak_heating = building.heating_peak_load
|
||||||
peak_cooling = building.cooling_peak_load
|
peak_cooling = building.cooling_peak_load
|
||||||
|
|
||||||
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
|
||||||
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
||||||
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
||||||
|
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
||||||
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
for year in range(1, self._number_of_years + 1):
|
||||||
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
||||||
maintenance_pv += maintenance_pv_0 * costs_increase
|
self._yearly_operational_costs[year]['Heating_maintenance'] = maintenance_heating_0 * \
|
||||||
maintenance_heating += maintenance_heating_0 * costs_increase
|
costs_increase
|
||||||
maintenance_cooling += maintenance_cooling_0 * costs_increase
|
self._yearly_operational_costs[year]['Cooling_maintenance'] = maintenance_cooling_0 * \
|
||||||
total_maintenance_costs = maintenance_pv + maintenance_heating + maintenance_cooling
|
costs_increase
|
||||||
return total_maintenance_costs
|
self._yearly_operational_costs[year]['PV_maintenance'] = maintenance_pv_0 * \
|
||||||
|
costs_increase
|
||||||
|
return self._yearly_operational_costs
|
||||||
|
|
7
main.py
7
main.py
|
@ -52,6 +52,9 @@ for file in files:
|
||||||
|
|
||||||
number_of_years = 30
|
number_of_years = 30
|
||||||
consumer_price_index = 0.04
|
consumer_price_index = 0.04
|
||||||
|
electricity_peak_index = 0.05
|
||||||
|
electricity_price_index = 0.05
|
||||||
|
gas_price_index = 0.05
|
||||||
discount_rate = 0.03
|
discount_rate = 0.03
|
||||||
retrofitting_year_of_construction =2020
|
retrofitting_year_of_construction =2020
|
||||||
|
|
||||||
|
@ -121,8 +124,8 @@ for retrofitting_scenario in retrofitting_scenarios:
|
||||||
# f'{building.function}\n')
|
# f'{building.function}\n')
|
||||||
#continue
|
#continue
|
||||||
print('lcc for first building started')
|
print('lcc for first building started')
|
||||||
lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index,
|
lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
|
||||||
discount_rate, retrofitting_scenario)
|
electricity_price_index, gas_price_index, discount_rate, retrofitting_scenario)
|
||||||
|
|
||||||
total_capital_costs = lcc.calculate_capital_costs()
|
total_capital_costs = lcc.calculate_capital_costs()
|
||||||
print(f'total capital costs {total_capital_costs}')
|
print(f'total capital costs {total_capital_costs}')
|
||||||
|
|
Loading…
Reference in New Issue
Block a user