Changes in subsidy structure

This commit is contained in:
Oriol Gavalda 2023-05-31 12:26:01 -04:00
parent a9744a2818
commit 7893a55243
2 changed files with 50 additions and 19 deletions

View File

@ -101,7 +101,7 @@ for retrofitting_scenario in retrofitting_scenarios:
if retrofitting_scenario == 1 or retrofitting_scenario == 3:
for building in city.buildings:
building.year_of_construction = 2020
building.year_of_construction = retrofitting_year_of_construction
ConstructionFactory(construction_format, city).enrich()
print('enrich retrofitted constructions... done')
@ -131,7 +131,7 @@ for retrofitting_scenario in retrofitting_scenarios:
print(f'fuel type {fuel_type}')
lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
electricity_price_index, gas_price_index, discount_rate, retrofitting_scenario, fuel_type)
global_capital_costs = lcc.calculate_capital_costs()
global_capital_costs, global_capital_incomes = lcc.calculate_capital_costs()
global_end_of_life_costs = lcc.calculate_end_of_life_costs()
global_operational_costs = lcc.calculate_total_operational_costs()
global_maintenance_costs = lcc.calculate_total_maintenance_costs()
@ -143,7 +143,7 @@ for retrofitting_scenario in retrofitting_scenarios:
global_operational_costs.to_excel(writer, sheet_name='global_operational_costs')
global_maintenance_costs.to_excel(writer, sheet_name='global_maintenance_costs')
global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')
df_capital_costs_skin = (
global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] +
@ -173,12 +173,16 @@ for retrofitting_scenario in retrofitting_scenarios:
)
df_operational_incomes = global_operational_incomes['Incomes electricity']
df_capital_incomes = global_capital_incomes['Subsidies construction'] + global_capital_incomes['Subsidies HVAC'] + \
global_capital_incomes['Subsidies PV']
life_cycle_costs_capital_skin = _npv_from_list(discount_rate, df_capital_costs_skin.values.tolist())
life_cycle_costs_capital_systems = _npv_from_list(discount_rate, df_capital_costs_systems.values.tolist())
life_cycle_costs_end_of_life_costs = _npv_from_list(discount_rate, df_end_of_life_costs.values.tolist())
life_cycle_operational_costs = _npv_from_list(discount_rate, df_operational_costs.values.tolist())
life_cycle_maintenance_costs = _npv_from_list(discount_rate, df_maintenance_costs.values.tolist())
life_cycle_operational_incomes = _npv_from_list(discount_rate, df_operational_incomes.values.tolist())
life_cycle_capital_incomes = _npv_from_list(discount_rate, df_capital_incomes.values.tolist())
life_cycle_costs = (
life_cycle_costs_capital_skin +
@ -186,7 +190,8 @@ for retrofitting_scenario in retrofitting_scenarios:
life_cycle_costs_end_of_life_costs +
life_cycle_operational_costs +
life_cycle_maintenance_costs -
life_cycle_operational_incomes
life_cycle_operational_incomes -
life_cycle_capital_incomes
)
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
@ -194,12 +199,13 @@ for retrofitting_scenario in retrofitting_scenarios:
life_cycle_costs_end_of_life_costs,
life_cycle_operational_costs,
life_cycle_maintenance_costs,
life_cycle_operational_incomes]
life_cycle_operational_incomes,
life_cycle_capital_incomes]
life_cycle_results.index = [f'total_capital_costs_skin',
f'total_capital_costs_systems', f'end_of_life_costs',
f'total_operational_costs', f'total_maintenance_costs',
f'operational_incomes']
f'operational_incomes', f'capital_incomes']
print(life_cycle_results)
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')

View File

@ -63,6 +63,8 @@ class LifeCycleCosts:
'PV_maintenance'], dtype='float')
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'], dtype='float')
self._yearly_capital_incomes = pd.DataFrame(index=rng, columns=['Subsidies construction',
'Subsidies HVAC', 'Subsidies PV'], dtype='float')
def calculate_capital_costs(self):
building = self._building
archetype = self._archetype
@ -71,6 +73,17 @@ class LifeCycleCosts:
surface_transparent = 0
surface_roof = 0
surface_ground = 0
capital_cost_pv = 0
capital_cost_opaque = 0
capital_cost_ground = 0
capital_cost_transparent = 0
capital_cost_roof = 0
capital_cost_heating_equipment = 0
capital_cost_cooling_equipment = 0
capital_cost_distribution_equipment = 0
capital_cost_other_hvac_ahu = 0
capital_cost_lighting = 0
total_floor_area = self._total_floor_area
for internal_zone in building.internal_zones:
@ -98,7 +111,6 @@ class LifeCycleCosts:
self._yearly_capital_costs.loc[0]['B2020_transparent'] = 0
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
self._yearly_capital_costs.loc[0]['B10_superstructure'] = 0
self._yearly_capital_costs.loc[0, 'B_Shell'] = 0
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'] = 0
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = 0
@ -106,6 +118,10 @@ class LifeCycleCosts:
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = 0
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = 0
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = 0
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = 0
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = 0
self._yearly_capital_costs.fillna(0, inplace=True)
if self._retrofitting_scenario in (self.SKIN_RETROFIT, self.SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
chapter = chapters.chapter('B_shell')
@ -113,12 +129,13 @@ class LifeCycleCosts:
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
capital_cost_skin = capital_cost_opaque + capital_cost_transparent + capital_cost_roof + capital_cost_ground
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque
self._yearly_capital_costs.loc[0]['B2020_transparent'] = capital_cost_transparent
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof
self._yearly_capital_costs.loc[0]['B10_superstructure'] = capital_cost_ground
self._yearly_capital_costs.loc[0, 'B_Shell'] = capital_cost_skin
if self._retrofitting_scenario in (self.SYSTEM_RETROFIT_AND_PV, self.SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
chapter = chapters.chapter('D_services')
@ -135,6 +152,7 @@ class LifeCycleCosts:
)
capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'], = capital_cost_heating_equipment
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = capital_cost_cooling_equipment
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = capital_cost_distribution_equipment
@ -170,7 +188,16 @@ class LifeCycleCosts:
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv \
* chapter.item(
'D301010_photovoltaic_system').reposition[0] * costs_increase
return self._yearly_capital_costs
capital_cost_skin = capital_cost_opaque + capital_cost_ground + capital_cost_transparent + capital_cost_roof
capital_cost_hvac = capital_cost_heating_equipment + capital_cost_cooling_equipment + \
capital_cost_distribution_equipment + capital_cost_other_hvac_ahu + capital_cost_lighting
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = capital_cost_skin * \
archetype.income.construction_subsidy/100
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = capital_cost_hvac * archetype.income.hvac_subsidy/100
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * archetype.income.photovoltaic_subsidy/100
self._yearly_capital_incomes.fillna(0, inplace=True)
return self._yearly_capital_costs, self._yearly_capital_incomes
def calculate_end_of_life_costs(self):
archetype = self._archetype
@ -216,11 +243,6 @@ class LifeCycleCosts:
# todo: change when peak electricity demand is coded. Careful with factor residential
peak_electricity_demand = 100 # self._peak_electricity_demand
print(f'total_electricity_cooling {electricity_cooling}')
print(f'total_electricity_lighting {electricity_lighting}')
print(f'total_electricity_plug_loads {electricity_plug_loads}')
print(f'total_electricity_consumption {total_electricity_consumption}')
print(f'price_electricity {archetype.operational_cost.fuels[0].variable[0]}')
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
@ -260,10 +282,13 @@ class LifeCycleCosts:
price_increase_electricity = 0
for year in range(1, self._number_of_years + 1):
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = onsite_electricity_production * \
price_increase_electricity
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
#todo: check the adequate assignation of price. Pilar
price_export = 0.075 # archetype.income.electricity_export
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = (onsite_electricity_production *
price_export *
price_increase_electricity
)
self._yearly_operational_incomes.fillna(0, inplace=True)
return self._yearly_operational_incomes