Refining of outputs and prepared outputs for the inclusion of system results.

This commit is contained in:
Oriol Gavalda 2023-05-27 09:32:42 -04:00
parent b2bbc7f7ee
commit c283f3a3e3
2 changed files with 122 additions and 117 deletions

View File

@ -15,8 +15,7 @@ import hub.helpers.constants as cte
class LifeCycleCosts:
def __init__(self, building, archetype, number_of_years, consumer_price_index, discount_rate,
retrofitting_scenario, heating_scop, cooling_seer, peak_electricity_demand,
factor_pv, factor_peak_lights):
retrofitting_scenario):
self._building = building
self._number_of_years = number_of_years
self._consumer_price_index = consumer_price_index
@ -33,13 +32,8 @@ class LifeCycleCosts:
for thermal_zone in internal_zone.thermal_zones:
self._total_floor_area += thermal_zone.total_floor_area
self._heating_scop = heating_scop
self._cooling_seer = cooling_seer
self._peak_electricity_demand = peak_electricity_demand
self._factor_pv = factor_pv
self._peak_lights = factor_peak_lights
#todo: revise if it works
rng = range(40)
rng = range(number_of_years)
self._yearly_capital_costs = pd.DataFrame(index=rng, columns=['B2010_opaque_walls', 'B2020_transparent',
'B3010_opaque_roof','B10_superstructure',
'D301010_photovoltaic_system','D3020_heat_generating_systems',
@ -51,7 +45,6 @@ class LifeCycleCosts:
def calculate_capital_costs(self):
building = self._building
archetype = self._archetype
factor_pv = self._factor_pv
surface_opaque = 0
surface_transparent = 0
@ -75,8 +68,10 @@ class LifeCycleCosts:
capital_cost_services = 0
reposition_cost_pv = 0
peak_heating = 0.1*self._total_floor_area
peak_cooling = 0.1*self._total_floor_area
peak_heating = building.heating_peak_load[cte.YEAR].values[0]
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]
#todo: put the value of area_pv when it exists
surface_pv = 10 #building.area_pv
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
chapter = chapters.chapter('B_shell')
@ -89,17 +84,18 @@ class LifeCycleCosts:
self._yearly_capital_costs.loc[0]['B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\
self._yearly_capital_costs.loc[0]['B_Shell']\
=[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin]
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
chapter = chapters.chapter('D_services')
capital_cost_pv = surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system']=capital_cost_pv
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system'] = capital_cost_pv
for year in range(1, self._number_of_years + 1):
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
reposition_cost_pv += surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').reposition[
reposition_cost_pv += surface_pv * chapter.item('D301010_photovoltaic_system').reposition[
0] * costs_increase
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_roof * \
factor_pv * chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv\
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
capital_cost_heating_equipment = peak_heating \
* chapter.item('D3020_heat_generating_systems').initial_investment[0]
capital_cost_cooling_equipment = peak_cooling \
@ -107,12 +103,14 @@ class LifeCycleCosts:
capital_cost_distribution_equipment = peak_cooling \
* chapter.item('D3040_distribution_systems').initial_investment[0]
capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
capital_cost_lighting = total_floor_area * self._peak_lights \
* chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
capital_cost_services = capital_cost_pv + capital_cost_heating_equipment + capital_cost_cooling_equipment\
+ capital_cost_distribution_equipment + capital_cost_other_hvac_ahu \
+ capital_cost_lighting
self._yearly_capital_costs.loc[0]['D3020_heat_generating_systems'], self._yearly_capital_costs.loc[0]['D3030_cooling_generation_systems'], \
self._yearly_capital_costs.loc[0]['D3040_distribution_systems'], self._yearly_capital_costs.loc[0]['D3080_other_hvac_ahu'], \
self._yearly_capital_costs.loc[0]['D5020_lighting_and_branch_wiring'], self._yearly_capital_costs.loc[0]['D_services'] \
@ -127,22 +125,27 @@ class LifeCycleCosts:
for year in range(1, self._number_of_years + 1):
chapter = chapters.chapter('D_services')
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year]['D3020_heat_generating_systems'] = reposition_cost_heating_equipment
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
reposition_cost_cooling_equipment = peak_cooling \
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year]['D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
self._yearly_capital_costs.loc[year]['D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year]['D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
capital_cost_subtotal = capital_cost_skin + capital_cost_services
capital_cost_total = capital_cost_subtotal * (1+chapters.design_allowance) * (1+chapters.overhead_and_profit)
@ -172,31 +175,34 @@ class LifeCycleCosts:
def calculate_total_operational_costs(self):
building = self._building
archetype = self._archetype
total_operational_costs = 0
peak_cost = 0
monthly_cost = 0
variable_cost = 0
variable_incomes = 0
total_floor_area = self._total_floor_area
electricity_heating = building.heating[cte.YEAR]['insel meb'] / (self._heating_scop*1000)
electricity_cooling = building.cooling[cte.YEAR]['insel meb'] / (self._cooling_seer*1000)
electricity_lighting = building.lighting_electrical_demand['month']['insel meb'].sum()/1000
domestic_hot_water_demand = building.domestic_hot_water_heat_demand['month']['insel meb'].sum()/1000
electricity_plug_loads = building.appliances_electrical_demand['month']['insel meb'].sum()/1000
total_electricity_consumption = electricity_cooling[0] + electricity_heating[0] + electricity_lighting \
#todo: split the heating between fuels
electricity_heating = building.heating_consumption[cte.YEAR][0] / (1000)
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / (1000)
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb']/1000
domestic_hot_water_demand = building.domestic_hot_water_consumption[cte.YEAR][0]/1000
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb']/1000
if (building.onsite_electrical_production[cte.YEAR][0] is None):
onsite_electricity_production = 0
else:
onsite_electricity_production= building.onsite_electrical_production[cte.YEAR][0]/1000
total_electricity_consumption = electricity_cooling + electricity_heating + electricity_lighting \
+ domestic_hot_water_demand + electricity_plug_loads
print(f'total electricity consumption: {total_electricity_consumption}')
print(f'total electricity production: {onsite_electricity_production}')
peak_electricity_demand = self._peak_electricity_demand
#todo: change when peak electricity demand is coded
peak_electricity_demand = 100 #self._peak_electricity_demand
operational_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
peak_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
monthly_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * (total_floor_area/100)
print(f'operational_cost_year_0 {operational_cost_year_0}')
print(f'peak_cost_year_0 {peak_cost_year_0}')
print(f'monthly_cost_year_0 {monthly_cost_year_0}')
incomes_year_0 = onsite_electricity_production * archetype.operational_cost.fuels[0].variable[0]
for year in range(1, self._number_of_years + 1):
peak_cost += operational_cost_year_0 \
@ -205,27 +211,23 @@ class LifeCycleCosts:
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
variable_cost += monthly_cost_year_0 \
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
total_operational_costs = peak_cost + monthly_cost + variable_cost
variable_incomes += incomes_year_0 \
* math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
total_operational_costs = peak_cost + monthly_cost + variable_cost - variable_incomes
return total_operational_costs
def calculate_total_maintenance_costs(self):
building = self._building
archetype = self._archetype
factor_pv = self._factor_pv
surface_roof = 0
#todo: change area pv when the variable exists
surface_pv = 10 #building.area_pv
maintenance_pv = 0
maintenance_heating = 0
maintenance_cooling = 0
peak_heating = 0.1 * self._total_floor_area
peak_cooling = 0.1 * self._total_floor_area
peak_heating = building.heating_peak_load
peak_cooling = building.cooling_peak_load
for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones:
for thermal_boundary in thermal_zone.thermal_boundaries:
if thermal_boundary.type == 'Roof':
surface_roof += thermal_boundary.opaque_area
surface_pv = surface_roof * factor_pv
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling

123
main.py
View File

@ -21,10 +21,11 @@ from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
import hub.helpers.constants as cte
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
from sra_engine import SraEngine
from hub.imports.energy_systems_factory import EnergySystemsFactory
from energy_systems_sizing import EnergySystemsSizing
from life_cycle_costs import LifeCycleCosts
def _search_archetype(costs_catalog, building_function):
costs_archetypes = costs_catalog.entries('archetypes').archetypes
for building_archetype in costs_archetypes:
@ -32,19 +33,18 @@ def _search_archetype(costs_catalog, building_function):
return building_archetype
raise KeyError('archetype not found')
file_path = (Path(__file__).parent.parent/'costs_workflow'/'input_files'/'selected_building_2864.geojson')
climate_reference_city = 'Montreal'
weather_file = 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw'
weather_format = 'epw'
construction_format = 'nrcan'
usage_format = 'nrcan'
usage_format = 'comnet'
energy_systems_format = 'montreal_custom'
attic_heated_case = 0
basement_heated_case = 1
tmp_folder = (Path(__file__).parent.parent/'monthly_energy_balance_workflow'/'tmp')
out_path = (Path(__file__).parent.parent / 'costs_workflow' / 'out_files')
files = glob.glob(f'{out_path}/*')
retrofitting_year_of_construction = 2015
for file in files:
if file != '.gitignore':
@ -53,79 +53,79 @@ for file in files:
number_of_years = 30
consumer_price_index = 0.04
discount_rate = 0.03
peak_electricity_demand = 33
factor_pv = 0.5
factor_peak_lights = 0.07
retrofitting_year_of_construction =2020
retrofitting_scenarios = [0, 1, 2, 3]
life_cycle_results = pd.DataFrame()
for retrofitting_scenario in retrofitting_scenarios:
if retrofitting_scenario == 2 or retrofitting_scenario == 3:
heating_scop = 3
cooling_seer = 4.5
else:
heating_scop = 1
cooling_seer = 2.8
print('[simulation start]')
city = GeometryFactory('geojson',
print('[city creation start]')
city = GeometryFactory('geojson',
path=file_path,
height_field='heightmax',
name_field='OBJECTID_12',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
print(f'city created from {file_path}')
print(f'city created from {file_path}')
city.climate_reference_city = climate_reference_city
city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve()
print(f'city created from {file_path}')
WeatherFactory(weather_format, city, file_name=weather_file).enrich()
print('enrich weather... done')
ConstructionFactory(construction_format, city).enrich()
print('enrich constructions... done')
UsageFactory(usage_format, city).enrich()
print('enrich usage... done')
for building in city.buildings:
building.energy_systems_archetype_name = 'system 1 gas'
EnergySystemsFactory(energy_systems_format, city).enrich()
print('enrich systems... done')
print('exporting:')
catalog = CostCatalogFactory('montreal_custom').catalog
print('costs catalog access... done')
sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
SraEngine(city, sra_file, tmp_folder, weather_file)
print(' sra processed...')
city.climate_reference_city = climate_reference_city
city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve()
print(f'city created from {file_path}')
WeatherFactory(weather_format, city, file_name=weather_file).enrich()
print('enrich weather... done')
UsageFactory(usage_format, city).enrich()
print('enrich usage... done')
catalog = CostCatalogFactory('montreal_custom').catalog
print('costs catalog access... done')
if retrofitting_scenario == 0 or retrofitting_scenario == 2:
for building in city.buildings:
building.year_of_construction = retrofitting_year_of_construction
ConstructionFactory(construction_format, city).enrich()
print('enrich constructions... done')
# sra + monthly running
print('exporting:')
sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
SraEngine(city, sra_file, tmp_folder, weather_file)
# Assign radiation to the city
print(' sra processed...')
for building in city.buildings:
for building in city.buildings:
building.attic_heated = attic_heated_case
building.basement_heated = basement_heated_case
for retrofitting_scenario in retrofitting_scenarios:
if retrofitting_scenario == 1 or retrofitting_scenario==3:
for building in city.buildings:
building.year_of_construction=2020
ConstructionFactory(construction_format, city).enrich()
print('enrich retrofitted constructions... done')
if retrofitting_scenario==2 or retrofitting_scenario==3:
for building in city.buildings:
building.energy_systems_archetype_name = 'system 6 electricity pv'
EnergySystemsFactory(energy_systems_format, city).enrich()
print('enrich systems... done')
MonthlyEnergyBalanceEngine(city, tmp_folder)
EnergySystemsSizing(city).enrich()
print(f'beginning costing scenario {retrofitting_scenario} systems... done')
for building in city.buildings:
try:
#try:
function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function]
archetype = _search_archetype(catalog, function)
except KeyError:
logger.error(f'Building {building.name} has unknown costs archetype for building function: '
f'{building.function}\n')
sys.stderr.write(f'Building {building.name} has unknown costs archetype for building function: '
f'{building.function}\n')
continue
#except KeyError:
# logger.error(f'Building {building.name} has unknown costs archetype for building function: '
# f'{building.function}\n')
# sys.stderr.write(f'Building {building.name} has unknown costs archetype for building function: '
# f'{building.function}\n')
#continue
print('lcc for first building started')
lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index,
discount_rate, retrofitting_scenario, heating_scop, cooling_seer,
peak_electricity_demand, factor_pv,factor_peak_lights)
discount_rate, retrofitting_scenario)
total_capital_costs, yearly_capital_costs = lcc.calculate_capital_costs()
total_capital_costs = lcc.calculate_capital_costs()
print(f'total capital costs {total_capital_costs}')
end_of_life_costs = lcc.calculate_end_of_life_costs()
total_operational_costs = lcc.calculate_total_operational_costs()
total_maintenance_costs = lcc.calculate_total_maintenance_costs()
@ -133,6 +133,9 @@ for retrofitting_scenario in retrofitting_scenarios:
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [total_capital_costs, end_of_life_costs,
total_operational_costs, total_maintenance_costs,
life_cycle_costs]
life_cycle_results.index = ['total_capital_costs', 'end_of_life_costs', 'total_operational_costs',
'total_maintenance_costs', 'life_cycle_costs']
life_cycle_results.to_excel(Path(__file__).parent/'out_files'/'Results.xlsx', index=True)
life_cycle_results.index = ['total_capital_costs','end_of_life_costs', 'total_operational_costs',
'total_maintenance_costs','life_cycle_costs']
life_cycle_results.to_excel(Path(__file__).parent/'out_files'/'Results.xlsx', index=True)