Ongoing developments for the course workshop, including graphs implementation

This commit is contained in:
Oriol Gavalda 2023-07-07 10:12:49 -04:00
parent d3b524b677
commit f15cfff55e
4 changed files with 454 additions and 38 deletions

View File

@ -9,7 +9,6 @@ from pathlib import Path
import numpy_financial as npf import numpy_financial as npf
import pandas as pd import pandas as pd
from energy_systems_sizing import EnergySystemsSizing
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
from hub.helpers.dictionaries import Dictionaries from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory from hub.imports.construction_factory import ConstructionFactory
@ -19,10 +18,11 @@ from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory from hub.imports.weather_factory import WeatherFactory
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
from sra_engine import SraEngine from sra_engine import SraEngine
import numpy as np
from printing_results import *
from hub.helpers import constants as cte
from life_cycle_costs import LifeCycleCosts from life_cycle_costs import LifeCycleCosts
# import constants
from costs import CLIMATE_REFERENCE_CITY, WEATHER_FILE, WEATHER_FORMAT, CONSTRUCTION_FORMAT, USAGE_FORMAT from costs import CLIMATE_REFERENCE_CITY, WEATHER_FILE, WEATHER_FORMAT, CONSTRUCTION_FORMAT, USAGE_FORMAT
from costs import ENERGY_SYSTEM_FORMAT, ATTIC_HEATED_CASE, BASEMENT_HEATED_CASE, RETROFITTING_SCENARIOS, NUMBER_OF_YEARS from costs import ENERGY_SYSTEM_FORMAT, ATTIC_HEATED_CASE, BASEMENT_HEATED_CASE, RETROFITTING_SCENARIOS, NUMBER_OF_YEARS
from costs import CONSUMER_PRICE_INDEX, ELECTRICITY_PEAK_INDEX, ELECTRICITY_PRICE_INDEX, GAS_PRICE_INDEX, DISCOUNT_RATE from costs import CONSUMER_PRICE_INDEX, ELECTRICITY_PEAK_INDEX, ELECTRICITY_PRICE_INDEX, GAS_PRICE_INDEX, DISCOUNT_RATE
@ -33,8 +33,7 @@ from costs import EMISSION_FACTOR_GAS_QUEBEC, EMISSION_FACTOR_ELECTRICITY_QUEBEC
EMISSION_FACTOR_BIOMASS_QUEBEC, EMISSION_FACTOR_FUEL_OIL_QUEBEC, EMISSION_FACTOR_DIESEL_QUEBEC EMISSION_FACTOR_BIOMASS_QUEBEC, EMISSION_FACTOR_FUEL_OIL_QUEBEC, EMISSION_FACTOR_DIESEL_QUEBEC
# import paths # import paths
from costs import file_path, tmp_folder, out_path from results import Results
def _npv_from_list(npv_discount_rate, list_cashflow): def _npv_from_list(npv_discount_rate, list_cashflow):
lcc_value = npf.npv(npv_discount_rate, list_cashflow) lcc_value = npf.npv(npv_discount_rate, list_cashflow)
@ -50,36 +49,44 @@ def _search_archetype(costs_catalog, building_function):
life_cycle_results = pd.DataFrame() life_cycle_results = pd.DataFrame()
print('[city creation start]') file_path = (Path(__file__).parent.parent / 'input_files' / 'summerschool_one_building.geojson')
climate_reference_city = 'Montreal'
weather_format = 'epw'
construction_format = 'nrcan'
usage_format = 'nrcan'
energy_systems_format = 'montreal_custom'
attic_heated_case = 0
basement_heated_case = 1
out_path = (Path(__file__).parent.parent / 'out_files')
tmp_folder = (Path(__file__).parent / 'tmp')
print('[simulation start]')
city = GeometryFactory('geojson', city = GeometryFactory('geojson',
path=file_path, path=file_path,
height_field='heightmax', height_field='citygml_me',
year_of_construction_field='ANNEE_CONS', year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI', function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city function_to_hub=Dictionaries().montreal_function_to_hub_function).city
city.climate_reference_city = CLIMATE_REFERENCE_CITY city.climate_reference_city = climate_reference_city
city.climate_file = (tmp_folder / f'{CLIMATE_REFERENCE_CITY}.cli').resolve() city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve()
print(f'city created from {file_path}') print(f'city created from {file_path}')
WeatherFactory(WEATHER_FORMAT, city, file_name=WEATHER_FILE).enrich() WeatherFactory(weather_format, city).enrich()
print('enrich weather... done') print('enrich weather... done')
ConstructionFactory(CONSTRUCTION_FORMAT, city).enrich() ConstructionFactory(construction_format, city).enrich()
print('enrich constructions... done') print('enrich constructions... done')
UsageFactory(USAGE_FORMAT, city).enrich() UsageFactory(usage_format, city).enrich()
print('enrich usage... done') print('enrich usage... done')
for building in city.buildings: for building in city.buildings:
building.energy_systems_archetype_name = 'system 1 gas' building.energy_systems_archetype_name = 'system 1 gas pv'
EnergySystemsFactory(ENERGY_SYSTEM_FORMAT, city).enrich() EnergySystemsFactory(energy_systems_format, city).enrich()
print('enrich systems... done') print('enrich systems... done')
print('exporting:')
catalog = CostCatalogFactory('montreal_custom').catalog
print('costs catalog access... done')
sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
SraEngine(city, sra_file, tmp_folder, WEATHER_FILE)
print(' sra processed...')
for building in city.buildings: print('exporting:')
building.attic_heated = ATTIC_HEATED_CASE sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
building.basement_heated = BASEMENT_HEATED_CASE SraEngine(city, sra_file, tmp_folder)
print(' sra processed...')
catalog = CostCatalogFactory('montreal_custom').catalog
for retrofitting_scenario in RETROFITTING_SCENARIOS: for retrofitting_scenario in RETROFITTING_SCENARIOS:
@ -96,13 +103,26 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
print('enrich systems... done') print('enrich systems... done')
MonthlyEnergyBalanceEngine(city, tmp_folder) MonthlyEnergyBalanceEngine(city, tmp_folder)
print(' insel processed...')
EnergySystemsSizing(city).enrich() for building in city.buildings:
for energy_system in building.energy_systems:
if cte.HEATING in energy_system.demand_types:
energy_system.generation_system.heat_power = building.heating_peak_load[cte.YEAR][0]
if cte.COOLING in energy_system.demand_types:
energy_system.generation_system.cooling_power = building.cooling_peak_load[cte.YEAR][0]
print(f' heating consumption {building.heating_consumption[cte.YEAR][0]}')
print('importing results:')
results = Results(city, out_path)
results.print()
print('results printed...')
print('[simulation end]')
print(f'beginning costing scenario {retrofitting_scenario} systems... done') print(f'beginning costing scenario {retrofitting_scenario} systems... done')
for building in city.buildings: for building in city.buildings:
total_floor_area = 0
function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function] function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function]
archetype = _search_archetype(catalog, function) archetype = _search_archetype(catalog, function)
print('lcc for first building started') print('lcc for first building started')
@ -117,7 +137,7 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
global_end_of_life_costs = lcc.calculate_end_of_life_costs() global_end_of_life_costs = lcc.calculate_end_of_life_costs()
global_operational_costs = lcc.calculate_total_operational_costs global_operational_costs = lcc.calculate_total_operational_costs
global_maintenance_costs = lcc.calculate_total_maintenance_costs() global_maintenance_costs = lcc.calculate_total_maintenance_costs()
global_operational_incomes = lcc.calculate_total_operational_incomes() global_operational_incomes = lcc.calculate_total_operational_incomes(retrofitting_scenario)
full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve() full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve()
with pd.ExcelWriter(full_path_output) as writer: with pd.ExcelWriter(full_path_output) as writer:
global_capital_costs.to_excel(writer, sheet_name='global_capital_costs') global_capital_costs.to_excel(writer, sheet_name='global_capital_costs')
@ -127,6 +147,31 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes') global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes') global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')
if retrofitting_scenario == 0:
investmentcosts = [global_capital_costs['B2010_opaque_walls'][0],
global_capital_costs['B2020_transparent'][0],
global_capital_costs['B3010_opaque_roof'][0],
global_capital_costs['B10_superstructure'][0],
global_capital_costs['D3020_heat_generating_systems'][0],
global_capital_costs['D3080_other_hvac_ahu'][0],
global_capital_costs['D5020_lighting_and_branch_wiring'][0],
global_capital_costs['D301010_photovoltaic_system'][0]]
investmentcosts = pd.DataFrame(investmentcosts)
else:
investmentcosts[f'retrofitting_scenario {retrofitting_scenario}'] = [global_capital_costs['B2010_opaque_walls'][0],
global_capital_costs['B2020_transparent'][0],
global_capital_costs['B3010_opaque_roof'][0],
global_capital_costs['B10_superstructure'][0],
global_capital_costs['D3020_heat_generating_systems'][0],
global_capital_costs['D3080_other_hvac_ahu'][0],
global_capital_costs['D5020_lighting_and_branch_wiring'][0],
global_capital_costs['D301010_photovoltaic_system'][0]]
investmentcosts.index = ['Opaque walls', 'Transparent walls', 'Opaque roof', 'Superstructure',
'Heat generation systems', 'Other HVAC AHU', 'Lighting and branch wiring', 'PV systems']
df_capital_costs_skin = ( df_capital_costs_skin = (
global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] + global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] +
global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure'] global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure']
@ -178,14 +223,14 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
life_cycle_operational_incomes - life_cycle_operational_incomes -
life_cycle_capital_incomes life_cycle_capital_incomes
) )
total_floor_area += lcc.calculate_total_floor_area()
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin, life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
life_cycle_costs_capital_systems, life_cycle_costs_capital_systems,
life_cycle_costs_end_of_life_costs, life_cycle_costs_end_of_life_costs,
life_cycle_operational_costs, life_cycle_operational_costs,
life_cycle_maintenance_costs, life_cycle_maintenance_costs,
life_cycle_operational_incomes, -life_cycle_operational_incomes,
life_cycle_capital_incomes] -life_cycle_capital_incomes]
life_cycle_results.index = ['total_capital_costs_skin', life_cycle_results.index = ['total_capital_costs_skin',
'total_capital_costs_systems', 'total_capital_costs_systems',
@ -195,5 +240,16 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
'operational_incomes', 'operational_incomes',
'capital_incomes'] 'capital_incomes']
print(life_cycle_results)
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}') print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
printing_results(investmentcosts,life_cycle_results,total_floor_area)

View File

@ -102,9 +102,9 @@ class LifeCycleCosts:
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
chapters = archetype.capital_cost chapters = archetype.capital_cost
print('kk')
peak_heating = building.heating_peak_load[cte.YEAR].values[0]/1000 peak_heating = building.heating_peak_load[cte.YEAR][0]/1000
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]/1000 peak_cooling = building.cooling_peak_load[cte.YEAR][0]/1000
# todo: change area pv when the variable exists # todo: change area pv when the variable exists
roof_area = 0 roof_area = 0
for roof in building.roofs: for roof in building.roofs:
@ -247,6 +247,9 @@ class LifeCycleCosts:
self._yearly_end_of_life_costs.fillna(0, inplace=True) self._yearly_end_of_life_costs.fillna(0, inplace=True)
return self._yearly_end_of_life_costs return self._yearly_end_of_life_costs
def calculate_total_floor_area(self):
total_floor_area = self._total_floor_area
return total_floor_area
@property @property
def calculate_total_operational_costs(self): def calculate_total_operational_costs(self):
""" """
@ -283,7 +286,7 @@ class LifeCycleCosts:
print(f'electricity consumption {total_electricity_consumption}') print(f'electricity consumption {total_electricity_consumption}')
# todo: change when peak electricity demand is coded. Careful with factor residential # todo: change when peak electricity demand is coded. Careful with factor residential
peak_electricity_demand = 100 # self._peak_electricity_demand peak_electricity_demand = 0.1*total_floor_area # self._peak_electricity_demand
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0] variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12 peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
@ -313,7 +316,7 @@ class LifeCycleCosts:
return self._yearly_operational_costs return self._yearly_operational_costs
def calculate_total_operational_incomes(self): def calculate_total_operational_incomes(self, retrofitting_scenario):
""" """
Calculate total operational incomes Calculate total operational incomes
:return: pd.DataFrame :return: pd.DataFrame
@ -322,7 +325,10 @@ class LifeCycleCosts:
if cte.YEAR not in building.onsite_electrical_production: if cte.YEAR not in building.onsite_electrical_production:
onsite_electricity_production = 0 onsite_electricity_production = 0
else: else:
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000 if retrofitting_scenario == 0 or retrofitting_scenario == 1:
onsite_electricity_production = 0
else:
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
for year in range(1, self._number_of_years + 1): for year in range(1, self._number_of_years + 1):
price_increase_electricity = math.pow(1 + self._electricity_price_index, year) price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
@ -348,8 +354,8 @@ class LifeCycleCosts:
roof_area += roof.solid_polygon.area roof_area += roof.solid_polygon.area
surface_pv = roof_area * 0.5 surface_pv = roof_area * 0.5
peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0] peak_heating = building.heating_peak_load[cte.YEAR][0]/1000
peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0] peak_cooling = building.heating_peak_load[cte.YEAR][0]/1000
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling

60
costs/printing_results.py Normal file
View File

@ -0,0 +1,60 @@
import numpy as np
import plotly.graph_objects as go
import plotly.offline as offline
import matplotlib.pyplot as plt
import plotly.express as px
def printing_results(investmentcosts, life_cycle_results,total_floor_area):
labels = investmentcosts.index
values = investmentcosts['retrofitting_scenario 1']
values2 = investmentcosts['retrofitting_scenario 2']
values3 = investmentcosts['retrofitting_scenario 3']
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
fig2 = go.Figure(data=[go.Pie(labels=labels, values=values2)])
fig3 = go.Figure(data=[go.Pie(labels=labels, values=values3)])
# Set the layout properties
fig.update_layout(
title='Retrofitting scenario 1',
showlegend=True
)
fig2.update_layout(
title='Retrofitting scenario 1',
showlegend=True
)
fig3.update_layout(
title='Retrofitting scenario 1',
showlegend=True
)
# Display the chart
fig.show()
fig2.show()
fig3.show()
df = life_cycle_results / total_floor_area
# Transpose the DataFrame (swap columns and rows)
df_swapped = df.transpose()
# Reset the index to make the current index a regular column
df_swapped = df_swapped.reset_index()
# Assign new column names
df_swapped.columns = ['Scenarios', 'total_capital_costs_skin',
'total_capital_costs_systems',
'end_of_life_costs',
'total_operational_costs',
'total_maintenance_costs',
'operational_incomes',
'capital_incomes']
df_swapped.index = df_swapped['Scenarios']
df_swapped = df_swapped.drop('Scenarios', axis=1)
print(df_swapped)
fig = px.bar(df_swapped, title='Life Cycle Costs for buildings')
fig.show()
# Display the chart
plt.show()

View File

@ -0,0 +1,294 @@
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"id": 12,
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
-73.57945149010348,
45.49793915473101
],
[
-73.57945502047383,
45.497935600591106
],
[
-73.57945748913181,
45.49793681276347
],
[
-73.57945995778985,
45.49793802493576
],
[
-73.57946108986009,
45.49793688584562
],
[
-73.57946222064952,
45.49793574585649
],
[
-73.57946503164756,
45.497932909392325
],
[
-73.5794800321942,
45.497917804072586
],
[
-73.57949503273288,
45.49790269875081
],
[
-73.57950823165471,
45.49788939886833
],
[
-73.57952143057031,
45.497876098984314
],
[
-73.57952481016481,
45.49787269972034
],
[
-73.57952818975889,
45.49786930045622
],
[
-73.57963374256275,
45.49776298233438
],
[
-73.57963739684415,
45.497759299424665
],
[
-73.57956562282082,
45.49772405755894
],
[
-73.5795624921933,
45.497722521006246
],
[
-73.57955974509859,
45.4977252944393
],
[
-73.57953557695755,
45.497749634054365
],
[
-73.5795114087957,
45.497773973664174
],
[
-73.57945076790263,
45.49783505227953
],
[
-73.57939012687844,
45.49789613086214
],
[
-73.57938759058709,
45.49789868818189
],
[
-73.57938505429556,
45.49790124550157
],
[
-73.57941717242674,
45.49791701633786
],
[
-73.5794136407655,
45.497920563278754
],
[
-73.57943256542505,
45.497929854507255
],
[
-73.57944202776348,
45.49793450461953
],
[
-73.57945149010348,
45.49793915473101
]
]
]
},
"properties": {
"OBJECTID_12": 12,
"gml_id": 1340982,
"gml_parent": "fme-gen-5fa2a82b-c38e-4bf0-9e8f-10a47b9f64f7",
"citygml_ta": "http://www.opengis.net/citygml/building/2.0",
"citygml_fe": "cityObjectMember",
"citygml__1": " ",
"citygml__2": " ",
"gml_descri": " ",
"gml_name": " ",
"citygml_cr": " ",
"citygml_te": " ",
"externalRe": " ",
"external_1": " ",
"external_2": " ",
"citygml_ge": " ",
"citygml_re": " ",
"citygml__3": " ",
"citygml_ap": " ",
"citygml_cl": " ",
"citygml__4": " ",
"citygml_fu": " ",
"citygml__5": " ",
"citygml_us": " ",
"citygml__6": " ",
"citygml_ye": " ",
"citygml__7": " ",
"citygml_ro": " ",
"citygml__8": " ",
"citygml_me": 19.113,
"citygml__9": "#m",
"citygml_st": " ",
"citygml_10": " ",
"citygml_11": " ",
"citygml_12": " ",
"citygml_13": " ",
"citygml_14": " ",
"citygml_ou": " ",
"citygml_in": " ",
"citygml_bo": " ",
"citygml_le": " ",
"citygml_15": " ",
"citygml_co": " ",
"citygml_ad": " ",
"Volume": "2931.350",
"parcelle": " ",
"OBJECTID": 1056,
"gml_id_1": "384b2b1c-2e25-4f6a-b082-d272dba3453f",
"gml_pare_1": 1340982,
"citygml_16": "http://www.opengis.net/citygml/building/2.0",
"citygml_17": "boundedBy",
"citygml_18": " ",
"citygml_19": " ",
"gml_desc_1": " ",
"gml_name_1": " ",
"citygml_20": " ",
"citygml_21": " ",
"external_3": " ",
"external_4": " ",
"external_5": " ",
"citygml_22": " ",
"citygml_23": " ",
"citygml_24": " ",
"citygml_25": " ",
"citygml_26": " ",
"citygml_op": " ",
"Area": 191.404,
"FID_": 0,
"Join_Count": 2,
"TARGET_FID": 1058,
"gml_id_12": 1340982,
"gml_pare_2": "fme-gen-5fa2a82b-c38e-4bf0-9e8f-10a47b9f64f7",
"citygml_27": "http://www.opengis.net/citygml/building/2.0",
"citygml_28": "cityObjectMember",
"citygml_29": " ",
"citygml_30": " ",
"gml_desc_2": " ",
"gml_name_2": " ",
"citygml_31": " ",
"citygml_32": " ",
"external_6": " ",
"external_7": " ",
"external_8": " ",
"citygml_33": " ",
"citygml_34": " ",
"citygml_35": " ",
"citygml_36": " ",
"citygml_37": " ",
"citygml_38": " ",
"citygml_39": " ",
"citygml_40": " ",
"citygml_41": " ",
"citygml_42": " ",
"citygml_43": " ",
"citygml_44": " ",
"citygml_45": " ",
"citygml_46": " ",
"citygml_47": 19.113,
"citygml_48": "#m",
"citygml_49": " ",
"citygml_50": " ",
"citygml_51": " ",
"citygml_52": " ",
"citygml_53": " ",
"citygml_54": " ",
"citygml_55": " ",
"citygml_56": " ",
"citygml_57": " ",
"citygml_58": " ",
"citygml_59": " ",
"citygml_60": " ",
"citygml_61": " ",
"Volume_1": "2931.350",
"Field": 0,
"Field1": 0,
"OBJECTID_1": 1056,
"gml_id_12_": "384b2b1c-2e25-4f6a-b082-d272dba3453f",
"gml_pare_3": 1340982,
"citygml_62": "http://www.opengis.net/citygml/building/2.0",
"citygml_63": "boundedBy",
"citygml_64": " ",
"citygml_65": " ",
"gml_desc_3": " ",
"gml_name_3": " ",
"citygml_66": " ",
"citygml_67": " ",
"external_9": " ",
"externa_10": " ",
"externa_11": " ",
"citygml_68": " ",
"citygml_69": " ",
"citygml_70": " ",
"citygml_71": " ",
"citygml_72": " ",
"citygml_73": " ",
"Area_1": 191.404,
"cityGML_hi": 0,
"Z_Min": 46.1162,
"Z_Max": 64.399,
"Shape_Leng": 63.6906066955,
"ID_UEV": "01036804",
"CIVIQUE_DE": " 2170",
"CIVIQUE_FI": " 2170",
"NOM_RUE": "rue Bishop (MTL)",
"MUNICIPALI": 50,
"ETAGE_HORS": 3,
"NOMBRE_LOG": 1,
"ANNEE_CONS": 1900,
"CODE_UTILI": 6000,
"LIBELLE_UT": "Immeuble à bureaux",
"CATEGORIE_": "Régulier",
"MATRICULE8": "9839-57-7770-3-000-0000",
"SUPERFICIE": 259,
"SUPERFIC_1": 490,
"NO_ARROND_": "REM19",
"Shape_Le_1": 0.00093336765858,
"Shape_Ar_1": 3.0845126501e-8,
"Z_Min_1": null,
"Z_Max_1": null,
"Shape_Length": 63.69060669550123,
"Shape_Area": 174.69050030775531
}
}
]
}