some reorganization to avoid hard-coding

This commit is contained in:
Pilar Monsalvete 2023-04-27 10:20:14 -04:00
parent 4e19afbf98
commit f9bb954be8
2 changed files with 68 additions and 69 deletions

View File

@ -7,11 +7,12 @@ Project contributor 2023 Author Oriol Gavaldà Torrellas oriol.gavalda@concordia
import math import math
import hub.helpers.constants as cte
class LifeCycleCosts: class LifeCycleCosts:
# todo: this should be (city, costs_catalog) or similar
def __init__(self, building, archetype, number_of_years, consumer_price_index, discount_rate, def __init__(self, building, archetype, number_of_years, consumer_price_index, discount_rate,
retrofitting_scenario): retrofitting_scenario, heating_scop, cooling_seer, peak_electricity_demand, factor_pv):
self._building = building self._building = building
self._number_of_years = number_of_years self._number_of_years = number_of_years
self._consumer_price_index = consumer_price_index self._consumer_price_index = consumer_price_index
@ -23,24 +24,29 @@ class LifeCycleCosts:
self._fuels = 0 self._fuels = 0
self._concepts = 0 self._concepts = 0
self._retrofitting_scenario = retrofitting_scenario self._retrofitting_scenario = retrofitting_scenario
self._total_floor_area = 0
for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones:
self._total_floor_area += thermal_zone.total_floor_area
self._heating_scop = heating_scop
self._cooling_seer = cooling_seer
self._peak_electricity_demand = peak_electricity_demand
self._factor_pv = factor_pv
def calculate_capital_costs(self): def calculate_capital_costs(self):
building = self._building building = self._building
archetype = self._archetype archetype = self._archetype
factor_pv = self._factor_pv
surface_opaque = 0 surface_opaque = 0
surface_transparent = 0 surface_transparent = 0
surface_roof = 0 surface_roof = 0
surface_ground = 0 surface_ground = 0
factor_pv = 0.5 total_floor_area = self._total_floor_area
factor_heating_power = 0.1 # kW/m2
factor_cooling_power = 0.1 # kW/m2
total_floor_area = 0
for internal_zone in building.internal_zones: for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones: for thermal_zone in internal_zone.thermal_zones:
total_floor_area += thermal_zone.total_floor_area
print(total_floor_area)
for thermal_boundary in thermal_zone.thermal_boundaries: for thermal_boundary in thermal_zone.thermal_boundaries:
if thermal_boundary.type == 'Ground': if thermal_boundary.type == 'Ground':
surface_ground += thermal_boundary.opaque_area surface_ground += thermal_boundary.opaque_area
@ -54,35 +60,38 @@ class LifeCycleCosts:
chapters = archetype.capital_cost chapters = archetype.capital_cost
capital_cost_skin = 0 capital_cost_skin = 0
capital_cost_services = 0 capital_cost_services = 0
reposition_cost_pv = 0
peak_heating = building.heating_peak_load[cte.YEAR]['insel'][0]
peak_cooling = building.cooling_peak_load[cte.YEAR]['insel'][0]
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3: if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
chapter = chapters.chapter('B_shell') chapter = chapters.chapter('B_shell')
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0] capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0] capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0] capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0] capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
capital_cost_skin= capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground capital_cost_skin = capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground
print(f'capital cost skin {capital_cost_skin}') print(f'capital cost skin {capital_cost_skin}')
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3: if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
chapter = chapters.chapter('D_services') chapter = chapters.chapter('D_services')
capital_cost_pv = surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0] capital_cost_pv = surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
reposition_cost_pv = 0
for year in range(1, self._number_of_years + 1): for year in range(1, self._number_of_years + 1):
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0: if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
reposition_cost_pv += surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').reposition[ reposition_cost_pv += surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').reposition[
0] * costs_increase 0] * costs_increase
capital_cost_heating_equipment = total_floor_area * factor_heating_power \ capital_cost_heating_equipment = peak_heating \
* chapter.item('D3020_heat_generating_systems').initial_investment[0] * chapter.item('D3020_heat_generating_systems').initial_investment[0]
capital_cost_cooling_equipment = total_floor_area * factor_cooling_power \ capital_cost_cooling_equipment = peak_cooling \
* chapter.item('D3030_cooling_generation_systems').initial_investment[0] * chapter.item('D3030_cooling_generation_systems').initial_investment[0]
capital_cost_distribution_equipment = total_floor_area * factor_cooling_power \ capital_cost_distribution_equipment = peak_cooling \
* chapter.item('D3040_distribution_systems').initial_investment[0] * chapter.item('D3040_distribution_systems').initial_investment[0]
capital_cost_other_hvac_ahu = total_floor_area * factor_cooling_power \ capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
* chapter.item('D3080_other_hvac_ahu').initial_investment[0]
capital_cost_lighting = total_floor_area * factor_pv \ capital_cost_lighting = total_floor_area * factor_pv \
* chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0] * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
@ -95,23 +104,19 @@ class LifeCycleCosts:
reposition_cost_cooling_equipment = 0 reposition_cost_cooling_equipment = 0
reposition_cost_lighting = 0 reposition_cost_lighting = 0
reposition_cost_hvac_ahu = 0 reposition_cost_hvac_ahu = 0
reposition_cost_pv = 0
for year in range(1, self._number_of_years + 1): for year in range(1, self._number_of_years + 1):
chapter = chapters.chapter('D_services') chapter = chapters.chapter('D_services')
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0: if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
reposition_cost_heating_equipment = total_floor_area * factor_heating_power * \ reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
chapter.item('D3020_heat_generating_systems').reposition[ * costs_increase
0] * costs_increase
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0: if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
reposition_cost_cooling_equipment = total_floor_area * factor_cooling_power * \ reposition_cost_cooling_equipment = peak_cooling \
chapter.item('D3030_cooling_generation_systems').reposition[ * chapter.item('D3030_cooling_generation_systems').reposition[0] \
0] * costs_increase * costs_increase
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0: if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
reposition_cost_hvac_ahu = total_floor_area * factor_cooling_power * \ reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
chapter.item('D3080_other_hvac_ahu').reposition[
0] * costs_increase
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0: if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \ reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
* costs_increase * costs_increase
@ -131,15 +136,9 @@ class LifeCycleCosts:
return life_cycle_cost_capital_total return life_cycle_cost_capital_total
def calculate_end_of_life_costs(self): def calculate_end_of_life_costs(self):
building = self._building
archetype = self._archetype archetype = self._archetype
total_floor_area = 0 total_floor_area = self._total_floor_area
for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones:
total_floor_area += thermal_zone.total_floor_area
print(total_floor_area)
price_increase = 0 price_increase = 0
for year in range(1, self._number_of_years + 1): for year in range(1, self._number_of_years + 1):
@ -156,37 +155,17 @@ class LifeCycleCosts:
peak_cost = 0 peak_cost = 0
monthly_cost = 0 monthly_cost = 0
variable_cost = 0 variable_cost = 0
total_floor_area = 0 total_floor_area = self._total_floor_area
for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones:
total_floor_area += thermal_zone.total_floor_area
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
specific_heating_demand = 50
else:
specific_heating_demand = 190
heating_demand = specific_heating_demand * total_floor_area
cooling_demand = 10 * total_floor_area
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
heating_scop = 3
cooling_seer = 4.5
else:
heating_scop = 1
cooling_seer = 2
electricity_heating = heating_demand/heating_scop
electricity_cooling = cooling_demand/cooling_seer
electricity_lighting = 11 * total_floor_area
electricity_plug_loads = 19 * total_floor_area
domestic_hot_water_demand = 50 * total_floor_area
electricity_heating = building.heating[cte.YEAR]['insel'][0] / self._heating_scop
electricity_cooling = building.cooling[cte.YEAR]['insel'][0] / self._cooling_seer
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel'][0]
domestic_hot_water_demand = building.domestic_hot_water_heat_demand[cte.YEAR]['insel'][0]
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel'][0]
total_electricity_consumption = electricity_cooling + electricity_heating + electricity_lighting \ total_electricity_consumption = electricity_cooling + electricity_heating + electricity_lighting \
+ domestic_hot_water_demand + electricity_plug_loads + domestic_hot_water_demand + electricity_plug_loads
peak_electricity_demand = 0.1 * total_floor_area peak_electricity_demand = self._peak_electricity_demand
operational_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0] operational_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
peak_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12 peak_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
@ -209,26 +188,25 @@ class LifeCycleCosts:
def calculate_total_maintenance_costs(self): def calculate_total_maintenance_costs(self):
building = self._building building = self._building
archetype = self._archetype archetype = self._archetype
total_floor_area = 0 factor_pv = self._factor_pv
factor_pv = 0.5
factor_heating_power = 0.1 # kW/m2
factor_cooling_power = 0.1 # kW/m2
surface_roof = 0 surface_roof = 0
maintenance_pv = 0 maintenance_pv = 0
maintenance_heating = 0 maintenance_heating = 0
maintenance_cooling = 0 maintenance_cooling = 0
peak_heating = building.heating_peak_load[cte.YEAR]['insel'][0]
peak_cooling = building.cooling_peak_load[cte.YEAR]['insel'][0]
for internal_zone in building.internal_zones: for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones: for thermal_zone in internal_zone.thermal_zones:
total_floor_area += thermal_zone.total_floor_area
for thermal_boundary in thermal_zone.thermal_boundaries: for thermal_boundary in thermal_zone.thermal_boundaries:
if thermal_boundary.type == 'Roof': if thermal_boundary.type == 'Roof':
surface_roof += thermal_boundary.opaque_area surface_roof += thermal_boundary.opaque_area
surface_pv = surface_roof*factor_pv surface_pv = surface_roof * factor_pv
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
maintenance_heating_0 = total_floor_area*factor_heating_power * archetype.operational_cost.maintenance_heating maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
maintenance_cooling_0 = total_floor_area*factor_cooling_power * archetype.operational_cost.maintenance_cooling maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
for year in range(1, self._number_of_years + 1): for year in range(1, self._number_of_years + 1):
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
maintenance_pv += maintenance_pv_0 * costs_increase maintenance_pv += maintenance_pv_0 * costs_increase

25
main.py
View File

@ -14,6 +14,7 @@ from hub.helpers.dictionaries import Dictionaries
from hub.hub_logger import logger from hub.hub_logger import logger
from hub.imports.geometry_factory import GeometryFactory from hub.imports.geometry_factory import GeometryFactory
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
import hub.helpers.constants as cte
from life_cycle_costs import LifeCycleCosts from life_cycle_costs import LifeCycleCosts
@ -44,11 +45,23 @@ city = GeometryFactory('geojson',
print(f'city created from {file_path}') print(f'city created from {file_path}')
ConstructionFactory('nrcan', city).enrich() ConstructionFactory('nrcan', city).enrich()
print('enrich constructions... done') print('enrich constructions... done')
catalog = CostCatalogFactory('montreal_custom').catalog
print('costs catalog access... done')
number_of_years = 30 number_of_years = 30
consumer_price_index = 0.04 consumer_price_index = 0.04
discount_rate = 0.03 discount_rate = 0.03
for building in city.buildings:
building.heating[cte.YEAR]['insel'] = [23]
building.cooling[cte.YEAR]['insel'] = [13]
building.lighting_electrical_demand[cte.YEAR]['insel'] = [58]
building.appliances_electrical_demand[cte.YEAR]['insel'] = [32]
building.domestic_hot_water_heat_demand[cte.YEAR]['insel'] = [22]
peak_electricity_demand = 33
factor_pv = 0.5
retrofitting_scenarios = [0, 1, 2, 3] retrofitting_scenarios = [0, 1, 2, 3]
catalog = CostCatalogFactory('montreal_custom').catalog
for building in city.buildings: for building in city.buildings:
try: try:
@ -62,8 +75,16 @@ for building in city.buildings:
continue continue
for retrofitting_scenario in retrofitting_scenarios: for retrofitting_scenario in retrofitting_scenarios:
if retrofitting_scenario == 2 or retrofitting_scenario == 3:
heating_scop = 3
cooling_seer = 4.5
else:
heating_scop = 1
cooling_seer = 2
lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index, lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index,
discount_rate, retrofitting_scenario) discount_rate, retrofitting_scenario, heating_scop, cooling_seer,
peak_electricity_demand, factor_pv)
total_capital_costs = lcc.calculate_capital_costs() total_capital_costs = lcc.calculate_capital_costs()
print(f'total capital costs scenario {retrofitting_scenario} are {total_capital_costs}') print(f'total capital costs scenario {retrofitting_scenario} are {total_capital_costs}')
end_of_life_costs = lcc.calculate_end_of_life_costs() end_of_life_costs = lcc.calculate_end_of_life_costs()