Solved all problems. Pending building peak loads, onsite production, pv surface and extra electrical consumption
This commit is contained in:
parent
9a8f85f683
commit
fa09b48624
|
@ -44,18 +44,15 @@ class LifeCycleCosts:
|
|||
'D3030_cooling_generation_systems','D3040_distribution_systems',
|
||||
'D3080_other_hvac_ahu','D5020_lighting_and_branch_wiring'],
|
||||
dtype='float')
|
||||
self._yearly_capital_costs.replace(np.nan, 0)
|
||||
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
|
||||
self._yearly_end_of_life_costs.replace(np.nan, 0)
|
||||
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
|
||||
'Fixed_costs_electricity_monthly',
|
||||
'Variable_costs_electricity','Fixed_costs_gas',
|
||||
'Variable_costs_gas','Heating_maintenance',
|
||||
'Cooling_maintenance','PV_maintenance'],
|
||||
'Variable_costs_gas'],
|
||||
dtype='float')
|
||||
self._yearly_operational_costs.replace(np.nan, 0)
|
||||
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance','Cooling_maintenance',
|
||||
'PV_maintenance'], dtype='float')
|
||||
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'],dtype='float')
|
||||
self._yearly_operational_incomes.replace(np.nan, 0)
|
||||
|
||||
def calculate_capital_costs(self):
|
||||
building = self._building
|
||||
|
@ -87,7 +84,17 @@ class LifeCycleCosts:
|
|||
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]
|
||||
#todo: put the value of area_pv when it exists
|
||||
surface_pv = 10 #building.area_pv
|
||||
|
||||
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'], self._yearly_capital_costs.loc[0]['B2020_transparent'], \
|
||||
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'], self._yearly_capital_costs.loc[0]['B10_superstructure'], \
|
||||
self._yearly_capital_costs.loc[0, 'B_Shell'] \
|
||||
= [0, 0, 0, 0, 0]
|
||||
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'], \
|
||||
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'], \
|
||||
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'], \
|
||||
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'], \
|
||||
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] \
|
||||
= [0, 0, 0, 0, 0]
|
||||
self._yearly_capital_costs.fillna(0,inplace=True)
|
||||
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
|
||||
chapter = chapters.chapter('B_shell')
|
||||
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
|
||||
|
@ -95,9 +102,9 @@ class LifeCycleCosts:
|
|||
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
||||
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
|
||||
capital_cost_skin = capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground
|
||||
self._yearly_capital_costs.loc[0]['B2010_opaque_walls'],self._yearly_capital_costs.loc[0]['B2020_transparent'], \
|
||||
self._yearly_capital_costs.loc[0]['B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\
|
||||
self._yearly_capital_costs.loc[0]['B_Shell']\
|
||||
self._yearly_capital_costs.loc[0,'B2010_opaque_walls'],self._yearly_capital_costs.loc[0]['B2020_transparent'], \
|
||||
self._yearly_capital_costs.loc[0,'B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\
|
||||
self._yearly_capital_costs.loc[0,'B_Shell']\
|
||||
=[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin]
|
||||
|
||||
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
|
||||
|
@ -116,102 +123,78 @@ class LifeCycleCosts:
|
|||
* chapter.item('D3040_distribution_systems').initial_investment[0]
|
||||
capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
|
||||
|
||||
capital_cost_lighting = total_floor_area * self._peak_lights \
|
||||
* chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
||||
capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
||||
|
||||
self._yearly_capital_costs.loc[0]['D3020_heat_generating_systems'], \
|
||||
self._yearly_capital_costs.loc[0]['D3030_cooling_generation_systems'], \
|
||||
self._yearly_capital_costs.loc[0]['D3040_distribution_systems'], \
|
||||
self._yearly_capital_costs.loc[0]['D3080_other_hvac_ahu'], \
|
||||
self._yearly_capital_costs.loc[0]['D5020_lighting_and_branch_wiring']\
|
||||
self._yearly_capital_costs.loc[0,'D3020_heat_generating_systems'], \
|
||||
self._yearly_capital_costs.loc[0,'D3030_cooling_generation_systems'], \
|
||||
self._yearly_capital_costs.loc[0,'D3040_distribution_systems'], \
|
||||
self._yearly_capital_costs.loc[0,'D3080_other_hvac_ahu'], \
|
||||
self._yearly_capital_costs.loc[0,'D5020_lighting_and_branch_wiring']\
|
||||
= [capital_cost_heating_equipment, capital_cost_cooling_equipment, capital_cost_distribution_equipment,
|
||||
capital_cost_other_hvac_ahu, capital_cost_lighting]
|
||||
|
||||
reposition_cost_heating_equipment = 0
|
||||
reposition_cost_cooling_equipment = 0
|
||||
reposition_cost_lighting = 0
|
||||
reposition_cost_hvac_ahu = 0
|
||||
|
||||
for year in range(1, self._number_of_years + 1):
|
||||
for year in range(1, self._number_of_years):
|
||||
chapter = chapters.chapter('D_services')
|
||||
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
||||
|
||||
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
|
||||
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
|
||||
* costs_increase
|
||||
self._yearly_capital_costs.loc[year]['D3020_heat_generating_systems'] = reposition_cost_heating_equipment
|
||||
self._yearly_capital_costs.loc[year,'D3020_heat_generating_systems'] = reposition_cost_heating_equipment
|
||||
|
||||
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
|
||||
reposition_cost_cooling_equipment = peak_cooling \
|
||||
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
|
||||
* costs_increase
|
||||
self._yearly_capital_costs.loc[year]['D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
|
||||
self._yearly_capital_costs.loc[year,'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
|
||||
|
||||
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
|
||||
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
|
||||
self._yearly_capital_costs.loc[year]['D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
|
||||
self._yearly_capital_costs.loc[year,'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
|
||||
|
||||
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
|
||||
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
|
||||
* costs_increase
|
||||
self._yearly_capital_costs.loc[year]['D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
|
||||
self._yearly_capital_costs.loc[year,'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
|
||||
|
||||
if self._retrofitting_scenario==2 or self._retrofitting_scenario==3 :
|
||||
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
|
||||
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv\
|
||||
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
|
||||
|
||||
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv \
|
||||
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
|
||||
return self._yearly_capital_costs
|
||||
|
||||
def calculate_end_of_life_costs(self):
|
||||
archetype = self._archetype
|
||||
|
||||
total_floor_area = self._total_floor_area
|
||||
|
||||
price_increase = 0
|
||||
for year in range(1, self._number_of_years + 1):
|
||||
price_increase += math.pow(1 + self._consumer_price_index, year)
|
||||
if year == self._number_of_years:
|
||||
self._end_of_life_cost[year]['End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost*price_increase
|
||||
return self._end_of_life_cost
|
||||
self._yearly_end_of_life_costs.at[year,'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost*price_increase
|
||||
self._yearly_end_of_life_costs.fillna(0,inplace=True)
|
||||
return self._yearly_end_of_life_costs
|
||||
|
||||
def calculate_total_operational_costs(self):
|
||||
building = self._building
|
||||
archetype = self._archetype
|
||||
total_operational_costs = 0
|
||||
peak_cost = 0
|
||||
monthly_cost = 0
|
||||
variable_cost = 0
|
||||
variable_incomes = 0
|
||||
total_floor_area = self._total_floor_area
|
||||
|
||||
#todo: split the heating between fuels
|
||||
electricity_heating = building.heating_consumption[cte.YEAR][0] / (1000)
|
||||
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / (1000)
|
||||
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb']/1000
|
||||
domestic_hot_water_demand = building.domestic_hot_water_consumption[cte.YEAR][0]/1000
|
||||
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb']/1000
|
||||
|
||||
if (building.onsite_electrical_production[cte.YEAR][0] is None):
|
||||
onsite_electricity_production = 0
|
||||
else:
|
||||
onsite_electricity_production= building.onsite_electrical_production[cte.YEAR][0]/1000
|
||||
|
||||
total_electricity_consumption = electricity_cooling + electricity_heating + electricity_lighting \
|
||||
+ domestic_hot_water_demand + electricity_plug_loads
|
||||
|
||||
print(f'total electricity consumption: {total_electricity_consumption}')
|
||||
print(f'total electricity production: {onsite_electricity_production}')
|
||||
|
||||
total_electricity_consumption = electricity_heating + electricity_cooling + electricity_lighting + \
|
||||
domestic_hot_water_demand + electricity_plug_loads
|
||||
#todo: change when peak electricity demand is coded. Careful with factor residential
|
||||
peak_electricity_demand = 100 #self._peak_electricity_demand
|
||||
factor_residential= total_floor_area/80
|
||||
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
||||
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
||||
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
|
||||
incomes_electricity_year_0 = onsite_electricity_production * archetype.operational_cost.fuels[0].variable[0]
|
||||
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly*12* factor_residential
|
||||
variable_gas_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[1].variable[0]
|
||||
|
||||
price_increase_electricity = 0
|
||||
price_increase_peak_electricity = 0
|
||||
price_increase_gas = 0
|
||||
|
@ -220,44 +203,40 @@ class LifeCycleCosts:
|
|||
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
|
||||
price_increase_peak_electricity += math.pow(1 + self._electricity_peak_index, year)
|
||||
price_increase_gas += math.pow(1 + self._gas_price_index, year)
|
||||
|
||||
self._yearly_operational_costs[year]['Fixed_costs_electricity_peak']=peak_electricity_cost_year_0*\
|
||||
self._yearly_operational_costs.at[year,'Fixed_costs_electricity_peak']=peak_electricity_cost_year_0*\
|
||||
price_increase_peak_electricity
|
||||
self._yearly_operational_costs[year]['Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
|
||||
|
||||
self._yearly_operational_costs.at[year,'Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
|
||||
price_increase_peak_electricity
|
||||
self._yearly_operational_costs[year]['Variable_costs_electricity'] = variable_electricity_cost_year_0 * \
|
||||
self._yearly_operational_costs.at[year,'Variable_costs_electricity'] = variable_electricity_cost_year_0 * \
|
||||
price_increase_electricity
|
||||
self._yearly_operational_costs[year]['Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
|
||||
self._yearly_operational_costs.at[year,'Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
|
||||
price_increase_gas
|
||||
self._yearly_operational_costs[year]['Variable_costs_gas'] = variable_gas_cost_year_0* \
|
||||
self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0* \
|
||||
price_increase_peak_electricity
|
||||
self._yearly_operational_costs[year]['Variable_costs_gas'] = variable_gas_cost_year_0 * \
|
||||
self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0 * \
|
||||
price_increase_peak_electricity
|
||||
|
||||
|
||||
self._yearly_operational_costs.fillna(0,inplace=True)
|
||||
return self._yearly_operational_costs
|
||||
|
||||
def calculate_total_operational_incomes(self):
|
||||
building = self._building
|
||||
archetype = self._archetype
|
||||
variable_incomes = 0
|
||||
total_floor_area = self._total_floor_area
|
||||
|
||||
if (building.onsite_electrical_production[cte.YEAR][0] is None):
|
||||
if (building.onsite_electrical_production is None):
|
||||
onsite_electricity_production = 0
|
||||
else:
|
||||
onsite_electricity_production= building.onsite_electrical_production[cte.YEAR][0]/1000
|
||||
|
||||
incomes_electricity_year_0 = onsite_electricity_production * archetype.operational_cost.fuels[0].variable[0]
|
||||
onsite_electricity_production= 100 #building.onsite_electrical_production[cte.YEAR]/1000
|
||||
|
||||
price_increase_electricity = 0
|
||||
|
||||
for year in range(1, self._number_of_years + 1):
|
||||
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
|
||||
|
||||
self._yearly_operational_incomes[year]['Incomes electricity']=onsite_electricity_production*\
|
||||
self._yearly_operational_incomes.loc[year,'Incomes electricity']=onsite_electricity_production*\
|
||||
price_increase_electricity
|
||||
|
||||
self._yearly_operational_incomes.fillna(0,inplace=True)
|
||||
return self._yearly_operational_incomes
|
||||
|
||||
def calculate_total_maintenance_costs(self):
|
||||
|
@ -266,19 +245,21 @@ class LifeCycleCosts:
|
|||
#todo: change area pv when the variable exists
|
||||
surface_pv = 10 #building.area_pv
|
||||
|
||||
peak_heating = building.heating_peak_load
|
||||
peak_cooling = building.cooling_peak_load
|
||||
peak_heating = 100#building.heating_peak_load[cte.YEAR][0]
|
||||
peak_cooling = 100#building.cooling_peak_load[cte.YEAR][0]
|
||||
|
||||
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
||||
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
||||
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
||||
|
||||
print(f'peak_heating{peak_heating}')
|
||||
print(f'maintenance_cost{archetype.operational_cost.maintenance_heating}')
|
||||
for year in range(1, self._number_of_years + 1):
|
||||
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
||||
self._yearly_operational_costs[year]['Heating_maintenance'] = maintenance_heating_0 * \
|
||||
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
||||
self._yearly_maintenance_costs.loc[year,'Heating_maintenance'] = maintenance_heating_0 * \
|
||||
costs_increase
|
||||
self._yearly_operational_costs[year]['Cooling_maintenance'] = maintenance_cooling_0 * \
|
||||
self._yearly_maintenance_costs.loc[year,'Cooling_maintenance'] = maintenance_cooling_0 * \
|
||||
costs_increase
|
||||
self._yearly_operational_costs[year]['PV_maintenance'] = maintenance_pv_0 * \
|
||||
self._yearly_maintenance_costs.loc[year,'PV_maintenance'] = maintenance_pv_0 * \
|
||||
costs_increase
|
||||
return self._yearly_operational_costs
|
||||
self._yearly_maintenance_costs.fillna(0,inplace=True)
|
||||
return self._yearly_maintenance_costs
|
||||
|
|
25
main.py
25
main.py
|
@ -9,12 +9,11 @@ import os
|
|||
from pathlib import Path
|
||||
import sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import numpy_financial as npf
|
||||
|
||||
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.hub_logger import logger
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
|
@ -28,7 +27,7 @@ from energy_systems_sizing import EnergySystemsSizing
|
|||
from life_cycle_costs import LifeCycleCosts
|
||||
|
||||
def _npv_from_list(npv_discount_rate, list_cashflow):
|
||||
lcc_value = np.npv(npv_discount_rate, list_cashflow)
|
||||
lcc_value = npf.npv(npv_discount_rate, list_cashflow)
|
||||
return lcc_value
|
||||
|
||||
def _search_archetype(costs_catalog, building_function):
|
||||
|
@ -55,7 +54,7 @@ for file in files:
|
|||
if file != '.gitignore':
|
||||
os.remove(file)
|
||||
|
||||
number_of_years = 30
|
||||
number_of_years = 31
|
||||
consumer_price_index = 0.04
|
||||
electricity_peak_index = 0.05
|
||||
electricity_price_index = 0.05
|
||||
|
@ -69,11 +68,9 @@ print('[city creation start]')
|
|||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='heightmax',
|
||||
name_field='OBJECTID_12',
|
||||
year_of_construction_field='ANNEE_CONS',
|
||||
function_field='CODE_UTILI',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
print(f'city created from {file_path}')
|
||||
city.climate_reference_city = climate_reference_city
|
||||
city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve()
|
||||
print(f'city created from {file_path}')
|
||||
|
@ -100,13 +97,13 @@ for building in city.buildings:
|
|||
|
||||
for retrofitting_scenario in retrofitting_scenarios:
|
||||
|
||||
if retrofitting_scenario == 1 or retrofitting_scenario==3:
|
||||
if retrofitting_scenario == 1 or retrofitting_scenario == 3:
|
||||
for building in city.buildings:
|
||||
building.year_of_construction=2020
|
||||
ConstructionFactory(construction_format, city).enrich()
|
||||
print('enrich retrofitted constructions... done')
|
||||
|
||||
if retrofitting_scenario==2 or retrofitting_scenario==3:
|
||||
if retrofitting_scenario == 2 or retrofitting_scenario == 3:
|
||||
for building in city.buildings:
|
||||
building.energy_systems_archetype_name = 'system 6 electricity pv'
|
||||
EnergySystemsFactory(energy_systems_format, city).enrich()
|
||||
|
@ -131,7 +128,6 @@ for retrofitting_scenario in retrofitting_scenarios:
|
|||
print('lcc for first building started')
|
||||
lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
|
||||
electricity_price_index, gas_price_index, discount_rate, retrofitting_scenario)
|
||||
|
||||
df_capital_costs_skin = lcc.calculate_capital_costs()['B2010_opaque_walls']+\
|
||||
lcc.calculate_capital_costs()['B2020_transparent']+\
|
||||
lcc.calculate_capital_costs()['B3010_opaque_roof']+\
|
||||
|
@ -149,9 +145,9 @@ for retrofitting_scenario in retrofitting_scenarios:
|
|||
lcc.calculate_total_operational_costs()['Variable_costs_electricity']+ \
|
||||
lcc.calculate_total_operational_costs()['Fixed_costs_gas']+ \
|
||||
lcc.calculate_total_operational_costs()['Variable_costs_gas']
|
||||
df_maintenance_costs = lcc.calculate_total_operational_costs()['Heating_maintenance']+\
|
||||
lcc.calculate_total_operational_costs()['Cooling_maintenance']+\
|
||||
lcc.calculate_total_operational_costs()['PV_maintenance']
|
||||
df_maintenance_costs = lcc.calculate_total_maintenance_costs()['Heating_maintenance']+\
|
||||
lcc.calculate_total_maintenance_costs()['Cooling_maintenance']+\
|
||||
lcc.calculate_total_maintenance_costs()['PV_maintenance']
|
||||
df_operational_incomes = lcc.calculate_total_operational_incomes()['Incomes electricity']
|
||||
|
||||
life_cycle_costs_capital_skin = _npv_from_list(discount_rate, df_capital_costs_skin.values.tolist())
|
||||
|
@ -173,9 +169,8 @@ for retrofitting_scenario in retrofitting_scenarios:
|
|||
life_cycle_operational_incomes]
|
||||
|
||||
life_cycle_results.index = ['total_capital_costs_skin','total_capital_costs_systems','end_of_life_costs',
|
||||
'total_operational_costs','total_maintenance_costs','life_cycle_costs',
|
||||
'maintenance_costs']
|
||||
|
||||
'total_operational_costs','total_maintenance_costs','operational_incomes']
|
||||
|
||||
print(life_cycle_results)
|
||||
#life_cycle_results.to_excel(Path(__file__).parent/'out_files'/f'Results{building.name}.xlsx', index=True)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user