Solved all problems. Pending building peak loads, onsite production, pv surface and extra electrical consumption

This commit is contained in:
Oriol Gavalda 2023-05-29 22:10:43 -04:00
parent 9a8f85f683
commit fa09b48624
2 changed files with 68 additions and 92 deletions

View File

@ -44,18 +44,15 @@ class LifeCycleCosts:
'D3030_cooling_generation_systems','D3040_distribution_systems',
'D3080_other_hvac_ahu','D5020_lighting_and_branch_wiring'],
dtype='float')
self._yearly_capital_costs.replace(np.nan, 0)
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
self._yearly_end_of_life_costs.replace(np.nan, 0)
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
'Fixed_costs_electricity_monthly',
'Variable_costs_electricity','Fixed_costs_gas',
'Variable_costs_gas','Heating_maintenance',
'Cooling_maintenance','PV_maintenance'],
'Variable_costs_gas'],
dtype='float')
self._yearly_operational_costs.replace(np.nan, 0)
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance','Cooling_maintenance',
'PV_maintenance'], dtype='float')
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'],dtype='float')
self._yearly_operational_incomes.replace(np.nan, 0)
def calculate_capital_costs(self):
building = self._building
@ -87,7 +84,17 @@ class LifeCycleCosts:
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]
#todo: put the value of area_pv when it exists
surface_pv = 10 #building.area_pv
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'], self._yearly_capital_costs.loc[0]['B2020_transparent'], \
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'], self._yearly_capital_costs.loc[0]['B10_superstructure'], \
self._yearly_capital_costs.loc[0, 'B_Shell'] \
= [0, 0, 0, 0, 0]
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'], \
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'], \
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'], \
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'], \
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] \
= [0, 0, 0, 0, 0]
self._yearly_capital_costs.fillna(0,inplace=True)
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
chapter = chapters.chapter('B_shell')
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
@ -95,9 +102,9 @@ class LifeCycleCosts:
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
capital_cost_skin = capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground
self._yearly_capital_costs.loc[0]['B2010_opaque_walls'],self._yearly_capital_costs.loc[0]['B2020_transparent'], \
self._yearly_capital_costs.loc[0]['B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\
self._yearly_capital_costs.loc[0]['B_Shell']\
self._yearly_capital_costs.loc[0,'B2010_opaque_walls'],self._yearly_capital_costs.loc[0]['B2020_transparent'], \
self._yearly_capital_costs.loc[0,'B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\
self._yearly_capital_costs.loc[0,'B_Shell']\
=[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin]
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
@ -116,102 +123,78 @@ class LifeCycleCosts:
* chapter.item('D3040_distribution_systems').initial_investment[0]
capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
capital_cost_lighting = total_floor_area * self._peak_lights \
* chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
self._yearly_capital_costs.loc[0]['D3020_heat_generating_systems'], \
self._yearly_capital_costs.loc[0]['D3030_cooling_generation_systems'], \
self._yearly_capital_costs.loc[0]['D3040_distribution_systems'], \
self._yearly_capital_costs.loc[0]['D3080_other_hvac_ahu'], \
self._yearly_capital_costs.loc[0]['D5020_lighting_and_branch_wiring']\
self._yearly_capital_costs.loc[0,'D3020_heat_generating_systems'], \
self._yearly_capital_costs.loc[0,'D3030_cooling_generation_systems'], \
self._yearly_capital_costs.loc[0,'D3040_distribution_systems'], \
self._yearly_capital_costs.loc[0,'D3080_other_hvac_ahu'], \
self._yearly_capital_costs.loc[0,'D5020_lighting_and_branch_wiring']\
= [capital_cost_heating_equipment, capital_cost_cooling_equipment, capital_cost_distribution_equipment,
capital_cost_other_hvac_ahu, capital_cost_lighting]
reposition_cost_heating_equipment = 0
reposition_cost_cooling_equipment = 0
reposition_cost_lighting = 0
reposition_cost_hvac_ahu = 0
for year in range(1, self._number_of_years + 1):
for year in range(1, self._number_of_years):
chapter = chapters.chapter('D_services')
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year]['D3020_heat_generating_systems'] = reposition_cost_heating_equipment
self._yearly_capital_costs.loc[year,'D3020_heat_generating_systems'] = reposition_cost_heating_equipment
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
reposition_cost_cooling_equipment = peak_cooling \
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year]['D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
self._yearly_capital_costs.loc[year,'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
self._yearly_capital_costs.loc[year]['D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
self._yearly_capital_costs.loc[year,'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year]['D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
self._yearly_capital_costs.loc[year,'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
if self._retrofitting_scenario==2 or self._retrofitting_scenario==3 :
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv\
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv \
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
return self._yearly_capital_costs
def calculate_end_of_life_costs(self):
archetype = self._archetype
total_floor_area = self._total_floor_area
price_increase = 0
for year in range(1, self._number_of_years + 1):
price_increase += math.pow(1 + self._consumer_price_index, year)
if year == self._number_of_years:
self._end_of_life_cost[year]['End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost*price_increase
return self._end_of_life_cost
self._yearly_end_of_life_costs.at[year,'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost*price_increase
self._yearly_end_of_life_costs.fillna(0,inplace=True)
return self._yearly_end_of_life_costs
def calculate_total_operational_costs(self):
building = self._building
archetype = self._archetype
total_operational_costs = 0
peak_cost = 0
monthly_cost = 0
variable_cost = 0
variable_incomes = 0
total_floor_area = self._total_floor_area
#todo: split the heating between fuels
electricity_heating = building.heating_consumption[cte.YEAR][0] / (1000)
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / (1000)
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb']/1000
domestic_hot_water_demand = building.domestic_hot_water_consumption[cte.YEAR][0]/1000
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb']/1000
if (building.onsite_electrical_production[cte.YEAR][0] is None):
onsite_electricity_production = 0
else:
onsite_electricity_production= building.onsite_electrical_production[cte.YEAR][0]/1000
total_electricity_consumption = electricity_cooling + electricity_heating + electricity_lighting \
+ domestic_hot_water_demand + electricity_plug_loads
print(f'total electricity consumption: {total_electricity_consumption}')
print(f'total electricity production: {onsite_electricity_production}')
total_electricity_consumption = electricity_heating + electricity_cooling + electricity_lighting + \
domestic_hot_water_demand + electricity_plug_loads
#todo: change when peak electricity demand is coded. Careful with factor residential
peak_electricity_demand = 100 #self._peak_electricity_demand
factor_residential= total_floor_area/80
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
incomes_electricity_year_0 = onsite_electricity_production * archetype.operational_cost.fuels[0].variable[0]
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly*12* factor_residential
variable_gas_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[1].variable[0]
price_increase_electricity = 0
price_increase_peak_electricity = 0
price_increase_gas = 0
@ -220,44 +203,40 @@ class LifeCycleCosts:
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
price_increase_peak_electricity += math.pow(1 + self._electricity_peak_index, year)
price_increase_gas += math.pow(1 + self._gas_price_index, year)
self._yearly_operational_costs[year]['Fixed_costs_electricity_peak']=peak_electricity_cost_year_0*\
self._yearly_operational_costs.at[year,'Fixed_costs_electricity_peak']=peak_electricity_cost_year_0*\
price_increase_peak_electricity
self._yearly_operational_costs[year]['Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
self._yearly_operational_costs.at[year,'Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
price_increase_peak_electricity
self._yearly_operational_costs[year]['Variable_costs_electricity'] = variable_electricity_cost_year_0 * \
self._yearly_operational_costs.at[year,'Variable_costs_electricity'] = variable_electricity_cost_year_0 * \
price_increase_electricity
self._yearly_operational_costs[year]['Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
self._yearly_operational_costs.at[year,'Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
price_increase_gas
self._yearly_operational_costs[year]['Variable_costs_gas'] = variable_gas_cost_year_0* \
self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0* \
price_increase_peak_electricity
self._yearly_operational_costs[year]['Variable_costs_gas'] = variable_gas_cost_year_0 * \
self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0 * \
price_increase_peak_electricity
self._yearly_operational_costs.fillna(0,inplace=True)
return self._yearly_operational_costs
def calculate_total_operational_incomes(self):
building = self._building
archetype = self._archetype
variable_incomes = 0
total_floor_area = self._total_floor_area
if (building.onsite_electrical_production[cte.YEAR][0] is None):
if (building.onsite_electrical_production is None):
onsite_electricity_production = 0
else:
onsite_electricity_production= building.onsite_electrical_production[cte.YEAR][0]/1000
incomes_electricity_year_0 = onsite_electricity_production * archetype.operational_cost.fuels[0].variable[0]
onsite_electricity_production= 100 #building.onsite_electrical_production[cte.YEAR]/1000
price_increase_electricity = 0
for year in range(1, self._number_of_years + 1):
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
self._yearly_operational_incomes[year]['Incomes electricity']=onsite_electricity_production*\
self._yearly_operational_incomes.loc[year,'Incomes electricity']=onsite_electricity_production*\
price_increase_electricity
self._yearly_operational_incomes.fillna(0,inplace=True)
return self._yearly_operational_incomes
def calculate_total_maintenance_costs(self):
@ -266,19 +245,21 @@ class LifeCycleCosts:
#todo: change area pv when the variable exists
surface_pv = 10 #building.area_pv
peak_heating = building.heating_peak_load
peak_cooling = building.cooling_peak_load
peak_heating = 100#building.heating_peak_load[cte.YEAR][0]
peak_cooling = 100#building.cooling_peak_load[cte.YEAR][0]
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
print(f'peak_heating{peak_heating}')
print(f'maintenance_cost{archetype.operational_cost.maintenance_heating}')
for year in range(1, self._number_of_years + 1):
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
self._yearly_operational_costs[year]['Heating_maintenance'] = maintenance_heating_0 * \
costs_increase = math.pow(1 + self._consumer_price_index, year)
self._yearly_maintenance_costs.loc[year,'Heating_maintenance'] = maintenance_heating_0 * \
costs_increase
self._yearly_operational_costs[year]['Cooling_maintenance'] = maintenance_cooling_0 * \
self._yearly_maintenance_costs.loc[year,'Cooling_maintenance'] = maintenance_cooling_0 * \
costs_increase
self._yearly_operational_costs[year]['PV_maintenance'] = maintenance_pv_0 * \
self._yearly_maintenance_costs.loc[year,'PV_maintenance'] = maintenance_pv_0 * \
costs_increase
return self._yearly_operational_costs
self._yearly_maintenance_costs.fillna(0,inplace=True)
return self._yearly_maintenance_costs

25
main.py
View File

@ -9,12 +9,11 @@ import os
from pathlib import Path
import sys
import pandas as pd
import numpy as np
import numpy_financial as npf
from hub.imports.construction_factory import ConstructionFactory
from hub.helpers.dictionaries import Dictionaries
from hub.hub_logger import logger
from hub.imports.geometry_factory import GeometryFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
@ -28,7 +27,7 @@ from energy_systems_sizing import EnergySystemsSizing
from life_cycle_costs import LifeCycleCosts
def _npv_from_list(npv_discount_rate, list_cashflow):
lcc_value = np.npv(npv_discount_rate, list_cashflow)
lcc_value = npf.npv(npv_discount_rate, list_cashflow)
return lcc_value
def _search_archetype(costs_catalog, building_function):
@ -55,7 +54,7 @@ for file in files:
if file != '.gitignore':
os.remove(file)
number_of_years = 30
number_of_years = 31
consumer_price_index = 0.04
electricity_peak_index = 0.05
electricity_price_index = 0.05
@ -69,11 +68,9 @@ print('[city creation start]')
city = GeometryFactory('geojson',
path=file_path,
height_field='heightmax',
name_field='OBJECTID_12',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
print(f'city created from {file_path}')
city.climate_reference_city = climate_reference_city
city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve()
print(f'city created from {file_path}')
@ -100,13 +97,13 @@ for building in city.buildings:
for retrofitting_scenario in retrofitting_scenarios:
if retrofitting_scenario == 1 or retrofitting_scenario==3:
if retrofitting_scenario == 1 or retrofitting_scenario == 3:
for building in city.buildings:
building.year_of_construction=2020
ConstructionFactory(construction_format, city).enrich()
print('enrich retrofitted constructions... done')
if retrofitting_scenario==2 or retrofitting_scenario==3:
if retrofitting_scenario == 2 or retrofitting_scenario == 3:
for building in city.buildings:
building.energy_systems_archetype_name = 'system 6 electricity pv'
EnergySystemsFactory(energy_systems_format, city).enrich()
@ -131,7 +128,6 @@ for retrofitting_scenario in retrofitting_scenarios:
print('lcc for first building started')
lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
electricity_price_index, gas_price_index, discount_rate, retrofitting_scenario)
df_capital_costs_skin = lcc.calculate_capital_costs()['B2010_opaque_walls']+\
lcc.calculate_capital_costs()['B2020_transparent']+\
lcc.calculate_capital_costs()['B3010_opaque_roof']+\
@ -149,9 +145,9 @@ for retrofitting_scenario in retrofitting_scenarios:
lcc.calculate_total_operational_costs()['Variable_costs_electricity']+ \
lcc.calculate_total_operational_costs()['Fixed_costs_gas']+ \
lcc.calculate_total_operational_costs()['Variable_costs_gas']
df_maintenance_costs = lcc.calculate_total_operational_costs()['Heating_maintenance']+\
lcc.calculate_total_operational_costs()['Cooling_maintenance']+\
lcc.calculate_total_operational_costs()['PV_maintenance']
df_maintenance_costs = lcc.calculate_total_maintenance_costs()['Heating_maintenance']+\
lcc.calculate_total_maintenance_costs()['Cooling_maintenance']+\
lcc.calculate_total_maintenance_costs()['PV_maintenance']
df_operational_incomes = lcc.calculate_total_operational_incomes()['Incomes electricity']
life_cycle_costs_capital_skin = _npv_from_list(discount_rate, df_capital_costs_skin.values.tolist())
@ -173,9 +169,8 @@ for retrofitting_scenario in retrofitting_scenarios:
life_cycle_operational_incomes]
life_cycle_results.index = ['total_capital_costs_skin','total_capital_costs_systems','end_of_life_costs',
'total_operational_costs','total_maintenance_costs','life_cycle_costs',
'maintenance_costs']
'total_operational_costs','total_maintenance_costs','operational_incomes']
print(life_cycle_results)
#life_cycle_results.to_excel(Path(__file__).parent/'out_files'/f'Results{building.name}.xlsx', index=True)