Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
c9d345e1cb | |||
f15cfff55e | |||
d3b524b677 |
@ -36,6 +36,14 @@ RETROFITTING_SCENARIOS = [
|
|||||||
SYSTEM_RETROFIT_AND_PV,
|
SYSTEM_RETROFIT_AND_PV,
|
||||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
|
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
|
||||||
]
|
]
|
||||||
|
|
||||||
|
EMISSION_FACTOR_ELECTRICITY_QUEBEC = 0.0015 #https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-quebec.html#:~:text=GHG%20Emissions,-Quebec's%20GHG%20emissions&text=The%20largest%20emitting%20sectors%20in,2.3%20MT%20CO2e.
|
||||||
|
EMISSION_FACTOR_GAS_QUEBEC = 0.183 #https://www.canada.ca/en/environment-climate-change/services/climate-change/pricing-pollution-how-it-will-work/output-based-pricing-system/federal-greenhouse-gas-offset-system/emission-factors-reference-values.html
|
||||||
|
EMISSION_FACTOR_BIOMASS_QUEBEC = 0.035 #Data from Spain. https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/factoresemision_tcm30-479095.pdf
|
||||||
|
EMISSION_FACTOR_FUEL_OIL_QUEBEC = 0.274
|
||||||
|
EMISSION_FACTOR_DIESEL_QUEBEC = 0.240
|
||||||
|
|
||||||
|
|
||||||
tmp_folder = Path('./tmp').resolve()
|
tmp_folder = Path('./tmp').resolve()
|
||||||
out_path = Path('./outputs').resolve()
|
out_path = Path('./outputs').resolve()
|
||||||
files = glob.glob(f'{out_path}/*')
|
files = glob.glob(f'{out_path}/*')
|
||||||
|
@ -9,7 +9,6 @@ from pathlib import Path
|
|||||||
|
|
||||||
import numpy_financial as npf
|
import numpy_financial as npf
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from energy_systems_sizing import EnergySystemsSizing
|
|
||||||
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
||||||
from hub.helpers.dictionaries import Dictionaries
|
from hub.helpers.dictionaries import Dictionaries
|
||||||
from hub.imports.construction_factory import ConstructionFactory
|
from hub.imports.construction_factory import ConstructionFactory
|
||||||
@ -19,18 +18,18 @@ from hub.imports.usage_factory import UsageFactory
|
|||||||
from hub.imports.weather_factory import WeatherFactory
|
from hub.imports.weather_factory import WeatherFactory
|
||||||
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
|
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
|
||||||
from sra_engine import SraEngine
|
from sra_engine import SraEngine
|
||||||
|
from printing_results import *
|
||||||
|
from hub.helpers import constants as cte
|
||||||
from life_cycle_costs import LifeCycleCosts
|
from life_cycle_costs import LifeCycleCosts
|
||||||
|
|
||||||
# import constants
|
from costs import CONSTRUCTION_FORMAT
|
||||||
from costs import CLIMATE_REFERENCE_CITY, WEATHER_FILE, WEATHER_FORMAT, CONSTRUCTION_FORMAT, USAGE_FORMAT
|
from costs import ENERGY_SYSTEM_FORMAT, RETROFITTING_SCENARIOS, NUMBER_OF_YEARS
|
||||||
from costs import ENERGY_SYSTEM_FORMAT, ATTIC_HEATED_CASE, BASEMENT_HEATED_CASE, RETROFITTING_SCENARIOS, NUMBER_OF_YEARS
|
|
||||||
from costs import CONSUMER_PRICE_INDEX, ELECTRICITY_PEAK_INDEX, ELECTRICITY_PRICE_INDEX, GAS_PRICE_INDEX, DISCOUNT_RATE
|
from costs import CONSUMER_PRICE_INDEX, ELECTRICITY_PEAK_INDEX, ELECTRICITY_PRICE_INDEX, GAS_PRICE_INDEX, DISCOUNT_RATE
|
||||||
from costs import SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
|
from costs import SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
|
||||||
from costs import RETROFITTING_YEAR_CONSTRUCTION
|
from costs import RETROFITTING_YEAR_CONSTRUCTION
|
||||||
|
|
||||||
# import paths
|
# import paths
|
||||||
from costs import file_path, tmp_folder, out_path
|
from results import Results
|
||||||
|
|
||||||
|
|
||||||
def _npv_from_list(npv_discount_rate, list_cashflow):
|
def _npv_from_list(npv_discount_rate, list_cashflow):
|
||||||
@ -47,36 +46,44 @@ def _search_archetype(costs_catalog, building_function):
|
|||||||
|
|
||||||
|
|
||||||
life_cycle_results = pd.DataFrame()
|
life_cycle_results = pd.DataFrame()
|
||||||
print('[city creation start]')
|
file_path = (Path(__file__).parent.parent / 'input_files' / 'summerschool_one_building.geojson')
|
||||||
|
climate_reference_city = 'Montreal'
|
||||||
|
weather_format = 'epw'
|
||||||
|
construction_format = 'nrcan'
|
||||||
|
usage_format = 'nrcan'
|
||||||
|
energy_systems_format = 'montreal_custom'
|
||||||
|
attic_heated_case = 0
|
||||||
|
basement_heated_case = 1
|
||||||
|
|
||||||
|
out_path = (Path(__file__).parent.parent / 'out_files')
|
||||||
|
tmp_folder = (Path(__file__).parent / 'tmp')
|
||||||
|
|
||||||
|
print('[simulation start]')
|
||||||
city = GeometryFactory('geojson',
|
city = GeometryFactory('geojson',
|
||||||
path=file_path,
|
path=file_path,
|
||||||
height_field='heightmax',
|
height_field='citygml_me',
|
||||||
year_of_construction_field='ANNEE_CONS',
|
year_of_construction_field='ANNEE_CONS',
|
||||||
function_field='CODE_UTILI',
|
function_field='CODE_UTILI',
|
||||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||||
city.climate_reference_city = CLIMATE_REFERENCE_CITY
|
city.climate_reference_city = climate_reference_city
|
||||||
city.climate_file = (tmp_folder / f'{CLIMATE_REFERENCE_CITY}.cli').resolve()
|
city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve()
|
||||||
print(f'city created from {file_path}')
|
print(f'city created from {file_path}')
|
||||||
WeatherFactory(WEATHER_FORMAT, city, file_name=WEATHER_FILE).enrich()
|
WeatherFactory(weather_format, city).enrich()
|
||||||
print('enrich weather... done')
|
print('enrich weather... done')
|
||||||
ConstructionFactory(CONSTRUCTION_FORMAT, city).enrich()
|
ConstructionFactory(construction_format, city).enrich()
|
||||||
print('enrich constructions... done')
|
print('enrich constructions... done')
|
||||||
UsageFactory(USAGE_FORMAT, city).enrich()
|
UsageFactory(usage_format, city).enrich()
|
||||||
print('enrich usage... done')
|
print('enrich usage... done')
|
||||||
for building in city.buildings:
|
for building in city.buildings:
|
||||||
building.energy_systems_archetype_name = 'system 1 gas'
|
building.energy_systems_archetype_name = 'system 1 gas pv'
|
||||||
EnergySystemsFactory(ENERGY_SYSTEM_FORMAT, city).enrich()
|
EnergySystemsFactory(energy_systems_format, city).enrich()
|
||||||
print('enrich systems... done')
|
print('enrich systems... done')
|
||||||
print('exporting:')
|
|
||||||
catalog = CostCatalogFactory('montreal_custom').catalog
|
|
||||||
print('costs catalog access... done')
|
|
||||||
sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
|
|
||||||
SraEngine(city, sra_file, tmp_folder, WEATHER_FILE)
|
|
||||||
print(' sra processed...')
|
|
||||||
|
|
||||||
for building in city.buildings:
|
print('exporting:')
|
||||||
building.attic_heated = ATTIC_HEATED_CASE
|
sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
|
||||||
building.basement_heated = BASEMENT_HEATED_CASE
|
SraEngine(city, sra_file, tmp_folder)
|
||||||
|
print(' sra processed...')
|
||||||
|
catalog = CostCatalogFactory('montreal_custom').catalog
|
||||||
|
|
||||||
for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
||||||
|
|
||||||
@ -93,13 +100,26 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
|||||||
print('enrich systems... done')
|
print('enrich systems... done')
|
||||||
|
|
||||||
MonthlyEnergyBalanceEngine(city, tmp_folder)
|
MonthlyEnergyBalanceEngine(city, tmp_folder)
|
||||||
|
print(' insel processed...')
|
||||||
|
|
||||||
EnergySystemsSizing(city).enrich()
|
for building in city.buildings:
|
||||||
|
for energy_system in building.energy_systems:
|
||||||
|
if cte.HEATING in energy_system.demand_types:
|
||||||
|
energy_system.generation_system.heat_power = building.heating_peak_load[cte.YEAR][0]
|
||||||
|
if cte.COOLING in energy_system.demand_types:
|
||||||
|
energy_system.generation_system.cooling_power = building.cooling_peak_load[cte.YEAR][0]
|
||||||
|
print(f' heating consumption {building.heating_consumption[cte.YEAR][0]}')
|
||||||
|
print('importing results:')
|
||||||
|
results = Results(city, out_path)
|
||||||
|
results.print()
|
||||||
|
print('results printed...')
|
||||||
|
|
||||||
|
print('[simulation end]')
|
||||||
|
|
||||||
print(f'beginning costing scenario {retrofitting_scenario} systems... done')
|
print(f'beginning costing scenario {retrofitting_scenario} systems... done')
|
||||||
|
|
||||||
for building in city.buildings:
|
for building in city.buildings:
|
||||||
|
total_floor_area = 0
|
||||||
function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function]
|
function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function]
|
||||||
archetype = _search_archetype(catalog, function)
|
archetype = _search_archetype(catalog, function)
|
||||||
print('lcc for first building started')
|
print('lcc for first building started')
|
||||||
@ -114,7 +134,7 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
|||||||
global_end_of_life_costs = lcc.calculate_end_of_life_costs()
|
global_end_of_life_costs = lcc.calculate_end_of_life_costs()
|
||||||
global_operational_costs = lcc.calculate_total_operational_costs
|
global_operational_costs = lcc.calculate_total_operational_costs
|
||||||
global_maintenance_costs = lcc.calculate_total_maintenance_costs()
|
global_maintenance_costs = lcc.calculate_total_maintenance_costs()
|
||||||
global_operational_incomes = lcc.calculate_total_operational_incomes()
|
global_operational_incomes = lcc.calculate_total_operational_incomes(retrofitting_scenario)
|
||||||
full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve()
|
full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve()
|
||||||
with pd.ExcelWriter(full_path_output) as writer:
|
with pd.ExcelWriter(full_path_output) as writer:
|
||||||
global_capital_costs.to_excel(writer, sheet_name='global_capital_costs')
|
global_capital_costs.to_excel(writer, sheet_name='global_capital_costs')
|
||||||
@ -124,6 +144,33 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
|||||||
global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
|
global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
|
||||||
global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')
|
global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')
|
||||||
|
|
||||||
|
investmentcosts = pd.DataFrame([])
|
||||||
|
print('RETROFITTING SCENARIO', retrofitting_scenario)
|
||||||
|
if retrofitting_scenario == 0:
|
||||||
|
investmentcosts = [global_capital_costs['B2010_opaque_walls'][0],
|
||||||
|
global_capital_costs['B2020_transparent'][0],
|
||||||
|
global_capital_costs['B3010_opaque_roof'][0],
|
||||||
|
global_capital_costs['B10_superstructure'][0],
|
||||||
|
global_capital_costs['D3020_heat_generating_systems'][0],
|
||||||
|
global_capital_costs['D3080_other_hvac_ahu'][0],
|
||||||
|
global_capital_costs['D5020_lighting_and_branch_wiring'][0],
|
||||||
|
global_capital_costs['D301010_photovoltaic_system'][0]]
|
||||||
|
investmentcosts = pd.DataFrame(investmentcosts)
|
||||||
|
|
||||||
|
else:
|
||||||
|
investmentcosts[f'retrofitting_scenario_{retrofitting_scenario}'] = \
|
||||||
|
[global_capital_costs['B2010_opaque_walls'][0],
|
||||||
|
global_capital_costs['B2020_transparent'][0],
|
||||||
|
global_capital_costs['B3010_opaque_roof'][0],
|
||||||
|
global_capital_costs['B10_superstructure'][0],
|
||||||
|
global_capital_costs['D3020_heat_generating_systems'][0],
|
||||||
|
global_capital_costs['D3080_other_hvac_ahu'][0],
|
||||||
|
global_capital_costs['D5020_lighting_and_branch_wiring'][0],
|
||||||
|
global_capital_costs['D301010_photovoltaic_system'][0]]
|
||||||
|
|
||||||
|
investmentcosts.index = ['Opaque walls', 'Transparent walls', 'Opaque roof', 'Superstructure',
|
||||||
|
'Heat generation systems', 'Other HVAC AHU', 'Lighting and branch wiring', 'PV systems']
|
||||||
|
|
||||||
df_capital_costs_skin = (
|
df_capital_costs_skin = (
|
||||||
global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] +
|
global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] +
|
||||||
global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure']
|
global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure']
|
||||||
@ -175,14 +222,14 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
|||||||
life_cycle_operational_incomes -
|
life_cycle_operational_incomes -
|
||||||
life_cycle_capital_incomes
|
life_cycle_capital_incomes
|
||||||
)
|
)
|
||||||
|
total_floor_area += lcc.calculate_total_floor_area()
|
||||||
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
|
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
|
||||||
life_cycle_costs_capital_systems,
|
life_cycle_costs_capital_systems,
|
||||||
life_cycle_costs_end_of_life_costs,
|
life_cycle_costs_end_of_life_costs,
|
||||||
life_cycle_operational_costs,
|
life_cycle_operational_costs,
|
||||||
life_cycle_maintenance_costs,
|
life_cycle_maintenance_costs,
|
||||||
life_cycle_operational_incomes,
|
-life_cycle_operational_incomes,
|
||||||
life_cycle_capital_incomes]
|
-life_cycle_capital_incomes]
|
||||||
|
|
||||||
life_cycle_results.index = ['total_capital_costs_skin',
|
life_cycle_results.index = ['total_capital_costs_skin',
|
||||||
'total_capital_costs_systems',
|
'total_capital_costs_systems',
|
||||||
@ -192,5 +239,16 @@ for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
|||||||
'operational_incomes',
|
'operational_incomes',
|
||||||
'capital_incomes']
|
'capital_incomes']
|
||||||
|
|
||||||
print(life_cycle_results)
|
|
||||||
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
|
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
|
||||||
|
|
||||||
|
# printing_results(investmentcosts, life_cycle_results, total_floor_area)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
68
costs/__main__emissions.py
Normal file
68
costs/__main__emissions.py
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
"""
|
||||||
|
Costs Workflow
|
||||||
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||||||
|
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||||
|
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
||||||
|
"""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from hub.helpers.dictionaries import Dictionaries
|
||||||
|
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
||||||
|
|
||||||
|
from costs import EMISSION_FACTOR_ELECTRICITY_QUEBEC, EMISSION_FACTOR_GAS_QUEBEC, EMISSION_FACTOR_BIOMASS_QUEBEC, \
|
||||||
|
EMISSION_FACTOR_FUEL_OIL_QUEBEC, EMISSION_FACTOR_DIESEL_QUEBEC, NUMBER_OF_YEARS
|
||||||
|
|
||||||
|
def _search_archetype(costs_catalog, building_function):
|
||||||
|
costs_archetypes = costs_catalog.entries('archetypes').archetypes
|
||||||
|
for building_archetype in costs_archetypes:
|
||||||
|
if str(building_function) == str(building_archetype.function):
|
||||||
|
return building_archetype
|
||||||
|
raise KeyError('archetype not found')
|
||||||
|
|
||||||
|
catalog = CostCatalogFactory('montreal_custom').catalog
|
||||||
|
|
||||||
|
for building in city.buildings:
|
||||||
|
building_heating_consumption = 1000
|
||||||
|
building_domestic_water_consumption = 1000
|
||||||
|
building_cooling_consumption = 1000
|
||||||
|
distribution_systems_electrical_consumption = 1000
|
||||||
|
lighting_electrical_demand = 1000
|
||||||
|
appliances_electrical_demand = 1000
|
||||||
|
rng = range(NUMBER_OF_YEARS)
|
||||||
|
|
||||||
|
function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function]
|
||||||
|
archetype = _search_archetype(catalog, function)
|
||||||
|
|
||||||
|
print('co2 for first building started')
|
||||||
|
if "gas" in building.energy_systems_archetype_name:
|
||||||
|
gas_consumption = building_heating_consumption + building_domestic_water_consumption
|
||||||
|
electricity_consumption = building_cooling_consumption + distribution_systems_electrical_consumption + \
|
||||||
|
lighting_electrical_demand + appliances_electrical_demand
|
||||||
|
biomass_consumption = 0
|
||||||
|
fuel_oil_consumption = 0
|
||||||
|
diesel_consumption = 0
|
||||||
|
else:
|
||||||
|
gas_consumption = 0
|
||||||
|
electricity_consumption = building_heating_consumption + building_domestic_water_consumption + \
|
||||||
|
building_cooling_consumption + distribution_systems_electrical_consumption + \
|
||||||
|
lighting_electrical_demand + appliances_electrical_demand
|
||||||
|
biomass_consumption = 0
|
||||||
|
fuel_oil_consumption = 0
|
||||||
|
diesel_consumption = 0
|
||||||
|
|
||||||
|
CO2_emissions = pd.DataFrame(index=rng, columns=['CO2 emissions gas', 'CO2 emissions electricity',
|
||||||
|
'CO2 Emissions biomass', 'CO2 emissions fueloil',
|
||||||
|
'CO2 emissions diesel'], dtype='float')
|
||||||
|
|
||||||
|
for year in range(1, NUMBER_OF_YEARS+1):
|
||||||
|
|
||||||
|
CO2_emissions.at[year,'CO2 emissions gas'] = gas_consumption * EMISSION_FACTOR_GAS_QUEBEC
|
||||||
|
CO2_emissions.at[year, 'CO2 emissions electricity'] = electricity_consumption * EMISSION_FACTOR_ELECTRICITY_QUEBEC
|
||||||
|
CO2_emissions.at[year, 'CO2 emissions biomass'] = biomass_consumption * EMISSION_FACTOR_BIOMASS_QUEBEC
|
||||||
|
CO2_emissions.at[year, 'CO2 emissions fueloil'] = fuel_oil_consumption * EMISSION_FACTOR_FUEL_OIL_QUEBEC
|
||||||
|
CO2_emissions.at[year, 'CO2 emissions diesel'] = diesel_consumption * EMISSION_FACTOR_DIESEL_QUEBEC
|
||||||
|
|
||||||
|
CO2_emissions_total = CO2_emissions.sum()
|
||||||
|
|
@ -102,9 +102,8 @@ class LifeCycleCosts:
|
|||||||
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
|
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
|
||||||
|
|
||||||
chapters = archetype.capital_cost
|
chapters = archetype.capital_cost
|
||||||
|
peak_heating = building.heating_peak_load[cte.YEAR][0]/1000
|
||||||
peak_heating = building.heating_peak_load[cte.YEAR].values[0]/1000
|
peak_cooling = building.cooling_peak_load[cte.YEAR][0]/1000
|
||||||
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]/1000
|
|
||||||
# todo: change area pv when the variable exists
|
# todo: change area pv when the variable exists
|
||||||
roof_area = 0
|
roof_area = 0
|
||||||
for roof in building.roofs:
|
for roof in building.roofs:
|
||||||
@ -247,6 +246,9 @@ class LifeCycleCosts:
|
|||||||
self._yearly_end_of_life_costs.fillna(0, inplace=True)
|
self._yearly_end_of_life_costs.fillna(0, inplace=True)
|
||||||
return self._yearly_end_of_life_costs
|
return self._yearly_end_of_life_costs
|
||||||
|
|
||||||
|
def calculate_total_floor_area(self):
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
return total_floor_area
|
||||||
@property
|
@property
|
||||||
def calculate_total_operational_costs(self):
|
def calculate_total_operational_costs(self):
|
||||||
"""
|
"""
|
||||||
@ -280,9 +282,10 @@ class LifeCycleCosts:
|
|||||||
electricity_heating + electricity_cooling + electricity_lighting + domestic_hot_water_electricity +
|
electricity_heating + electricity_cooling + electricity_lighting + domestic_hot_water_electricity +
|
||||||
electricity_plug_loads + electricity_distribution
|
electricity_plug_loads + electricity_distribution
|
||||||
)
|
)
|
||||||
|
print(f'electricity consumption {total_electricity_consumption}')
|
||||||
|
|
||||||
# todo: change when peak electricity demand is coded. Careful with factor residential
|
# todo: change when peak electricity demand is coded. Careful with factor residential
|
||||||
peak_electricity_demand = 100 # self._peak_electricity_demand
|
peak_electricity_demand = 0.1*total_floor_area # self._peak_electricity_demand
|
||||||
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
||||||
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
||||||
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
|
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
|
||||||
@ -312,7 +315,7 @@ class LifeCycleCosts:
|
|||||||
|
|
||||||
return self._yearly_operational_costs
|
return self._yearly_operational_costs
|
||||||
|
|
||||||
def calculate_total_operational_incomes(self):
|
def calculate_total_operational_incomes(self, retrofitting_scenario):
|
||||||
"""
|
"""
|
||||||
Calculate total operational incomes
|
Calculate total operational incomes
|
||||||
:return: pd.DataFrame
|
:return: pd.DataFrame
|
||||||
@ -320,6 +323,9 @@ class LifeCycleCosts:
|
|||||||
building = self._building
|
building = self._building
|
||||||
if cte.YEAR not in building.onsite_electrical_production:
|
if cte.YEAR not in building.onsite_electrical_production:
|
||||||
onsite_electricity_production = 0
|
onsite_electricity_production = 0
|
||||||
|
else:
|
||||||
|
if retrofitting_scenario == 0 or retrofitting_scenario == 1:
|
||||||
|
onsite_electricity_production = 0
|
||||||
else:
|
else:
|
||||||
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
|
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
|
||||||
|
|
||||||
@ -347,8 +353,8 @@ class LifeCycleCosts:
|
|||||||
roof_area += roof.solid_polygon.area
|
roof_area += roof.solid_polygon.area
|
||||||
surface_pv = roof_area * 0.5
|
surface_pv = roof_area * 0.5
|
||||||
|
|
||||||
peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0]
|
peak_heating = building.heating_peak_load[cte.YEAR][0]/1000
|
||||||
peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]
|
peak_cooling = building.heating_peak_load[cte.YEAR][0]/1000
|
||||||
|
|
||||||
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
||||||
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
||||||
|
58
costs/printing_results.py
Normal file
58
costs/printing_results.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
import plotly.graph_objects as go
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import plotly.express as px
|
||||||
|
|
||||||
|
|
||||||
|
def printing_results(investmentcosts, life_cycle_results,total_floor_area):
|
||||||
|
|
||||||
|
labels = investmentcosts.index
|
||||||
|
values = investmentcosts['retrofitting_scenario_1']
|
||||||
|
values2 = investmentcosts['retrofitting_scenario_2']
|
||||||
|
values3 = investmentcosts['retrofitting_scenario_3']
|
||||||
|
|
||||||
|
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
|
||||||
|
fig2 = go.Figure(data=[go.Pie(labels=labels, values=values2)])
|
||||||
|
fig3 = go.Figure(data=[go.Pie(labels=labels, values=values3)])
|
||||||
|
# Set the layout properties
|
||||||
|
fig.update_layout(
|
||||||
|
title='Retrofitting scenario 1',
|
||||||
|
showlegend=True
|
||||||
|
)
|
||||||
|
fig2.update_layout(
|
||||||
|
title='Retrofitting scenario 2',
|
||||||
|
showlegend=True
|
||||||
|
)
|
||||||
|
fig3.update_layout(
|
||||||
|
title='Retrofitting scenario 3',
|
||||||
|
showlegend=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Display the chart
|
||||||
|
fig.show()
|
||||||
|
fig2.show()
|
||||||
|
fig3.show()
|
||||||
|
|
||||||
|
df = life_cycle_results / total_floor_area
|
||||||
|
|
||||||
|
# Transpose the DataFrame (swap columns and rows)
|
||||||
|
df_swapped = df.transpose()
|
||||||
|
|
||||||
|
# Reset the index to make the current index a regular column
|
||||||
|
df_swapped = df_swapped.reset_index()
|
||||||
|
|
||||||
|
# Assign new column names
|
||||||
|
df_swapped.columns = ['Scenarios', 'total_capital_costs_skin',
|
||||||
|
'total_capital_costs_systems',
|
||||||
|
'end_of_life_costs',
|
||||||
|
'total_operational_costs',
|
||||||
|
'total_maintenance_costs',
|
||||||
|
'operational_incomes',
|
||||||
|
'capital_incomes']
|
||||||
|
|
||||||
|
df_swapped.index = df_swapped['Scenarios']
|
||||||
|
df_swapped = df_swapped.drop('Scenarios', axis=1)
|
||||||
|
print(df_swapped)
|
||||||
|
fig = px.bar(df_swapped, title='Life Cycle Costs for buildings')
|
||||||
|
fig.show()
|
||||||
|
# Display the chart
|
||||||
|
plt.show()
|
294
input_files/summerschool_one_building.geojson
Normal file
294
input_files/summerschool_one_building.geojson
Normal file
@ -0,0 +1,294 @@
|
|||||||
|
{
|
||||||
|
"type": "FeatureCollection",
|
||||||
|
"features": [
|
||||||
|
{
|
||||||
|
"type": "Feature",
|
||||||
|
"id": 12,
|
||||||
|
"geometry": {
|
||||||
|
"type": "Polygon",
|
||||||
|
"coordinates": [
|
||||||
|
[
|
||||||
|
[
|
||||||
|
-73.57945149010348,
|
||||||
|
45.49793915473101
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945502047383,
|
||||||
|
45.497935600591106
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945748913181,
|
||||||
|
45.49793681276347
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945995778985,
|
||||||
|
45.49793802493576
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57946108986009,
|
||||||
|
45.49793688584562
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57946222064952,
|
||||||
|
45.49793574585649
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57946503164756,
|
||||||
|
45.497932909392325
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.5794800321942,
|
||||||
|
45.497917804072586
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57949503273288,
|
||||||
|
45.49790269875081
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57950823165471,
|
||||||
|
45.49788939886833
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57952143057031,
|
||||||
|
45.497876098984314
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57952481016481,
|
||||||
|
45.49787269972034
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57952818975889,
|
||||||
|
45.49786930045622
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57963374256275,
|
||||||
|
45.49776298233438
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57963739684415,
|
||||||
|
45.497759299424665
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57956562282082,
|
||||||
|
45.49772405755894
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.5795624921933,
|
||||||
|
45.497722521006246
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57955974509859,
|
||||||
|
45.4977252944393
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57953557695755,
|
||||||
|
45.497749634054365
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.5795114087957,
|
||||||
|
45.497773973664174
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945076790263,
|
||||||
|
45.49783505227953
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57939012687844,
|
||||||
|
45.49789613086214
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57938759058709,
|
||||||
|
45.49789868818189
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57938505429556,
|
||||||
|
45.49790124550157
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57941717242674,
|
||||||
|
45.49791701633786
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.5794136407655,
|
||||||
|
45.497920563278754
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57943256542505,
|
||||||
|
45.497929854507255
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57944202776348,
|
||||||
|
45.49793450461953
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945149010348,
|
||||||
|
45.49793915473101
|
||||||
|
]
|
||||||
|
]
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"properties": {
|
||||||
|
"OBJECTID_12": 12,
|
||||||
|
"gml_id": 1340982,
|
||||||
|
"gml_parent": "fme-gen-5fa2a82b-c38e-4bf0-9e8f-10a47b9f64f7",
|
||||||
|
"citygml_ta": "http://www.opengis.net/citygml/building/2.0",
|
||||||
|
"citygml_fe": "cityObjectMember",
|
||||||
|
"citygml__1": " ",
|
||||||
|
"citygml__2": " ",
|
||||||
|
"gml_descri": " ",
|
||||||
|
"gml_name": " ",
|
||||||
|
"citygml_cr": " ",
|
||||||
|
"citygml_te": " ",
|
||||||
|
"externalRe": " ",
|
||||||
|
"external_1": " ",
|
||||||
|
"external_2": " ",
|
||||||
|
"citygml_ge": " ",
|
||||||
|
"citygml_re": " ",
|
||||||
|
"citygml__3": " ",
|
||||||
|
"citygml_ap": " ",
|
||||||
|
"citygml_cl": " ",
|
||||||
|
"citygml__4": " ",
|
||||||
|
"citygml_fu": " ",
|
||||||
|
"citygml__5": " ",
|
||||||
|
"citygml_us": " ",
|
||||||
|
"citygml__6": " ",
|
||||||
|
"citygml_ye": " ",
|
||||||
|
"citygml__7": " ",
|
||||||
|
"citygml_ro": " ",
|
||||||
|
"citygml__8": " ",
|
||||||
|
"citygml_me": 19.113,
|
||||||
|
"citygml__9": "#m",
|
||||||
|
"citygml_st": " ",
|
||||||
|
"citygml_10": " ",
|
||||||
|
"citygml_11": " ",
|
||||||
|
"citygml_12": " ",
|
||||||
|
"citygml_13": " ",
|
||||||
|
"citygml_14": " ",
|
||||||
|
"citygml_ou": " ",
|
||||||
|
"citygml_in": " ",
|
||||||
|
"citygml_bo": " ",
|
||||||
|
"citygml_le": " ",
|
||||||
|
"citygml_15": " ",
|
||||||
|
"citygml_co": " ",
|
||||||
|
"citygml_ad": " ",
|
||||||
|
"Volume": "2931.350",
|
||||||
|
"parcelle": " ",
|
||||||
|
"OBJECTID": 1056,
|
||||||
|
"gml_id_1": "384b2b1c-2e25-4f6a-b082-d272dba3453f",
|
||||||
|
"gml_pare_1": 1340982,
|
||||||
|
"citygml_16": "http://www.opengis.net/citygml/building/2.0",
|
||||||
|
"citygml_17": "boundedBy",
|
||||||
|
"citygml_18": " ",
|
||||||
|
"citygml_19": " ",
|
||||||
|
"gml_desc_1": " ",
|
||||||
|
"gml_name_1": " ",
|
||||||
|
"citygml_20": " ",
|
||||||
|
"citygml_21": " ",
|
||||||
|
"external_3": " ",
|
||||||
|
"external_4": " ",
|
||||||
|
"external_5": " ",
|
||||||
|
"citygml_22": " ",
|
||||||
|
"citygml_23": " ",
|
||||||
|
"citygml_24": " ",
|
||||||
|
"citygml_25": " ",
|
||||||
|
"citygml_26": " ",
|
||||||
|
"citygml_op": " ",
|
||||||
|
"Area": 191.404,
|
||||||
|
"FID_": 0,
|
||||||
|
"Join_Count": 2,
|
||||||
|
"TARGET_FID": 1058,
|
||||||
|
"gml_id_12": 1340982,
|
||||||
|
"gml_pare_2": "fme-gen-5fa2a82b-c38e-4bf0-9e8f-10a47b9f64f7",
|
||||||
|
"citygml_27": "http://www.opengis.net/citygml/building/2.0",
|
||||||
|
"citygml_28": "cityObjectMember",
|
||||||
|
"citygml_29": " ",
|
||||||
|
"citygml_30": " ",
|
||||||
|
"gml_desc_2": " ",
|
||||||
|
"gml_name_2": " ",
|
||||||
|
"citygml_31": " ",
|
||||||
|
"citygml_32": " ",
|
||||||
|
"external_6": " ",
|
||||||
|
"external_7": " ",
|
||||||
|
"external_8": " ",
|
||||||
|
"citygml_33": " ",
|
||||||
|
"citygml_34": " ",
|
||||||
|
"citygml_35": " ",
|
||||||
|
"citygml_36": " ",
|
||||||
|
"citygml_37": " ",
|
||||||
|
"citygml_38": " ",
|
||||||
|
"citygml_39": " ",
|
||||||
|
"citygml_40": " ",
|
||||||
|
"citygml_41": " ",
|
||||||
|
"citygml_42": " ",
|
||||||
|
"citygml_43": " ",
|
||||||
|
"citygml_44": " ",
|
||||||
|
"citygml_45": " ",
|
||||||
|
"citygml_46": " ",
|
||||||
|
"citygml_47": 19.113,
|
||||||
|
"citygml_48": "#m",
|
||||||
|
"citygml_49": " ",
|
||||||
|
"citygml_50": " ",
|
||||||
|
"citygml_51": " ",
|
||||||
|
"citygml_52": " ",
|
||||||
|
"citygml_53": " ",
|
||||||
|
"citygml_54": " ",
|
||||||
|
"citygml_55": " ",
|
||||||
|
"citygml_56": " ",
|
||||||
|
"citygml_57": " ",
|
||||||
|
"citygml_58": " ",
|
||||||
|
"citygml_59": " ",
|
||||||
|
"citygml_60": " ",
|
||||||
|
"citygml_61": " ",
|
||||||
|
"Volume_1": "2931.350",
|
||||||
|
"Field": 0,
|
||||||
|
"Field1": 0,
|
||||||
|
"OBJECTID_1": 1056,
|
||||||
|
"gml_id_12_": "384b2b1c-2e25-4f6a-b082-d272dba3453f",
|
||||||
|
"gml_pare_3": 1340982,
|
||||||
|
"citygml_62": "http://www.opengis.net/citygml/building/2.0",
|
||||||
|
"citygml_63": "boundedBy",
|
||||||
|
"citygml_64": " ",
|
||||||
|
"citygml_65": " ",
|
||||||
|
"gml_desc_3": " ",
|
||||||
|
"gml_name_3": " ",
|
||||||
|
"citygml_66": " ",
|
||||||
|
"citygml_67": " ",
|
||||||
|
"external_9": " ",
|
||||||
|
"externa_10": " ",
|
||||||
|
"externa_11": " ",
|
||||||
|
"citygml_68": " ",
|
||||||
|
"citygml_69": " ",
|
||||||
|
"citygml_70": " ",
|
||||||
|
"citygml_71": " ",
|
||||||
|
"citygml_72": " ",
|
||||||
|
"citygml_73": " ",
|
||||||
|
"Area_1": 191.404,
|
||||||
|
"cityGML_hi": 0,
|
||||||
|
"Z_Min": 46.1162,
|
||||||
|
"Z_Max": 64.399,
|
||||||
|
"Shape_Leng": 63.6906066955,
|
||||||
|
"ID_UEV": "01036804",
|
||||||
|
"CIVIQUE_DE": " 2170",
|
||||||
|
"CIVIQUE_FI": " 2170",
|
||||||
|
"NOM_RUE": "rue Bishop (MTL)",
|
||||||
|
"MUNICIPALI": 50,
|
||||||
|
"ETAGE_HORS": 3,
|
||||||
|
"NOMBRE_LOG": 1,
|
||||||
|
"ANNEE_CONS": 1900,
|
||||||
|
"CODE_UTILI": 6000,
|
||||||
|
"LIBELLE_UT": "Immeuble à bureaux",
|
||||||
|
"CATEGORIE_": "Régulier",
|
||||||
|
"MATRICULE8": "9839-57-7770-3-000-0000",
|
||||||
|
"SUPERFICIE": 259,
|
||||||
|
"SUPERFIC_1": 490,
|
||||||
|
"NO_ARROND_": "REM19",
|
||||||
|
"Shape_Le_1": 0.00093336765858,
|
||||||
|
"Shape_Ar_1": 3.0845126501e-8,
|
||||||
|
"Z_Min_1": null,
|
||||||
|
"Z_Max_1": null,
|
||||||
|
"Shape_Length": 63.69060669550123,
|
||||||
|
"Shape_Area": 174.69050030775531
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
4
out_files/.gitignore
vendored
Normal file
4
out_files/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
# Ignore everything in this directory
|
||||||
|
.gitignore
|
||||||
|
# Except this file
|
||||||
|
!.gitignore
|
Loading…
Reference in New Issue
Block a user