Compare commits
41 Commits
test-branc
...
main
Author | SHA1 | Date | |
---|---|---|---|
c9d345e1cb | |||
f15cfff55e | |||
d3b524b677 | |||
dd0317c979 | |||
5be5b3f51e | |||
072d69d415 | |||
ad2cbad9d0 | |||
ad0b32c15d | |||
57ee5c9873 | |||
7893a55243 | |||
a0813f0f2f | |||
a9744a2818 | |||
a97c52bfae | |||
f77df925ba | |||
b65ab80c8a | |||
1f35c31f24 | |||
d951252d02 | |||
3fd0202f7a | |||
3a7ecb2472 | |||
fff569b46f | |||
dba0b3f77f | |||
9f97e2b2f2 | |||
fa09b48624 | |||
9a8f85f683 | |||
3b44f6563e | |||
b49fbcf4f4 | |||
520f0ee7a9 | |||
c283f3a3e3 | |||
b2bbc7f7ee | |||
512cd6b81e | |||
f9bb954be8 | |||
4e19afbf98 | |||
9284fa989b | |||
d4de6cc471 | |||
9c3e9641a8 | |||
fcd6dc3436 | |||
e9df29a323 | |||
4f01916085 | |||
483c24b19e | |||
d9c0f75e72 | |||
ed2b96aeaa |
53
costs/__init__.py
Normal file
53
costs/__init__.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
"""
|
||||||
|
Cost workflow initialization
|
||||||
|
"""
|
||||||
|
import glob
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# configurable parameters
|
||||||
|
file_path = Path('./data/selected_building_2864.geojson').resolve()
|
||||||
|
CONSTRUCTION_FORMAT = 'nrcan'
|
||||||
|
USAGE_FORMAT = 'comnet'
|
||||||
|
ENERGY_SYSTEM_FORMAT = 'montreal_custom'
|
||||||
|
ATTIC_HEATED_CASE = 0
|
||||||
|
BASEMENT_HEATED_CASE = 1
|
||||||
|
NUMBER_OF_YEARS = 31
|
||||||
|
PERCENTAGE_CREDIT = 0
|
||||||
|
INTEREST_RATE = 0.04
|
||||||
|
CREDIT_YEARS = 15
|
||||||
|
CONSUMER_PRICE_INDEX = 0.04
|
||||||
|
ELECTRICITY_PEAK_INDEX = 0.05
|
||||||
|
ELECTRICITY_PRICE_INDEX = 0.05
|
||||||
|
GAS_PRICE_INDEX = 0.05
|
||||||
|
DISCOUNT_RATE = 0.03
|
||||||
|
RETROFITTING_YEAR_CONSTRUCTION = 2020
|
||||||
|
|
||||||
|
CLIMATE_REFERENCE_CITY = 'Montreal'
|
||||||
|
WEATHER_FILE = 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw'
|
||||||
|
WEATHER_FORMAT = 'epw'
|
||||||
|
CURRENT_STATUS = 0
|
||||||
|
SKIN_RETROFIT = 1
|
||||||
|
SYSTEM_RETROFIT_AND_PV = 2
|
||||||
|
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV = 3
|
||||||
|
RETROFITTING_SCENARIOS = [
|
||||||
|
CURRENT_STATUS,
|
||||||
|
SKIN_RETROFIT,
|
||||||
|
SYSTEM_RETROFIT_AND_PV,
|
||||||
|
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
|
||||||
|
]
|
||||||
|
|
||||||
|
EMISSION_FACTOR_ELECTRICITY_QUEBEC = 0.0015 #https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-quebec.html#:~:text=GHG%20Emissions,-Quebec's%20GHG%20emissions&text=The%20largest%20emitting%20sectors%20in,2.3%20MT%20CO2e.
|
||||||
|
EMISSION_FACTOR_GAS_QUEBEC = 0.183 #https://www.canada.ca/en/environment-climate-change/services/climate-change/pricing-pollution-how-it-will-work/output-based-pricing-system/federal-greenhouse-gas-offset-system/emission-factors-reference-values.html
|
||||||
|
EMISSION_FACTOR_BIOMASS_QUEBEC = 0.035 #Data from Spain. https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/factoresemision_tcm30-479095.pdf
|
||||||
|
EMISSION_FACTOR_FUEL_OIL_QUEBEC = 0.274
|
||||||
|
EMISSION_FACTOR_DIESEL_QUEBEC = 0.240
|
||||||
|
|
||||||
|
|
||||||
|
tmp_folder = Path('./tmp').resolve()
|
||||||
|
out_path = Path('./outputs').resolve()
|
||||||
|
files = glob.glob(f'{out_path}/*')
|
||||||
|
print('path', file_path)
|
||||||
|
for file in files:
|
||||||
|
if file != '.gitignore':
|
||||||
|
os.remove(file)
|
254
costs/__main__.py
Normal file
254
costs/__main__.py
Normal file
@ -0,0 +1,254 @@
|
|||||||
|
"""
|
||||||
|
Costs Workflow
|
||||||
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||||||
|
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||||
|
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
||||||
|
"""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy_financial as npf
|
||||||
|
import pandas as pd
|
||||||
|
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
||||||
|
from hub.helpers.dictionaries import Dictionaries
|
||||||
|
from hub.imports.construction_factory import ConstructionFactory
|
||||||
|
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||||
|
from hub.imports.geometry_factory import GeometryFactory
|
||||||
|
from hub.imports.usage_factory import UsageFactory
|
||||||
|
from hub.imports.weather_factory import WeatherFactory
|
||||||
|
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
|
||||||
|
from sra_engine import SraEngine
|
||||||
|
from printing_results import *
|
||||||
|
from hub.helpers import constants as cte
|
||||||
|
from life_cycle_costs import LifeCycleCosts
|
||||||
|
|
||||||
|
from costs import CONSTRUCTION_FORMAT
|
||||||
|
from costs import ENERGY_SYSTEM_FORMAT, RETROFITTING_SCENARIOS, NUMBER_OF_YEARS
|
||||||
|
from costs import CONSUMER_PRICE_INDEX, ELECTRICITY_PEAK_INDEX, ELECTRICITY_PRICE_INDEX, GAS_PRICE_INDEX, DISCOUNT_RATE
|
||||||
|
from costs import SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
|
||||||
|
from costs import RETROFITTING_YEAR_CONSTRUCTION
|
||||||
|
|
||||||
|
# import paths
|
||||||
|
from results import Results
|
||||||
|
|
||||||
|
|
||||||
|
def _npv_from_list(npv_discount_rate, list_cashflow):
|
||||||
|
lcc_value = npf.npv(npv_discount_rate, list_cashflow)
|
||||||
|
return lcc_value
|
||||||
|
|
||||||
|
|
||||||
|
def _search_archetype(costs_catalog, building_function):
|
||||||
|
costs_archetypes = costs_catalog.entries('archetypes').archetypes
|
||||||
|
for building_archetype in costs_archetypes:
|
||||||
|
if str(building_function) == str(building_archetype.function):
|
||||||
|
return building_archetype
|
||||||
|
raise KeyError('archetype not found')
|
||||||
|
|
||||||
|
|
||||||
|
life_cycle_results = pd.DataFrame()
|
||||||
|
file_path = (Path(__file__).parent.parent / 'input_files' / 'summerschool_one_building.geojson')
|
||||||
|
climate_reference_city = 'Montreal'
|
||||||
|
weather_format = 'epw'
|
||||||
|
construction_format = 'nrcan'
|
||||||
|
usage_format = 'nrcan'
|
||||||
|
energy_systems_format = 'montreal_custom'
|
||||||
|
attic_heated_case = 0
|
||||||
|
basement_heated_case = 1
|
||||||
|
|
||||||
|
out_path = (Path(__file__).parent.parent / 'out_files')
|
||||||
|
tmp_folder = (Path(__file__).parent / 'tmp')
|
||||||
|
|
||||||
|
print('[simulation start]')
|
||||||
|
city = GeometryFactory('geojson',
|
||||||
|
path=file_path,
|
||||||
|
height_field='citygml_me',
|
||||||
|
year_of_construction_field='ANNEE_CONS',
|
||||||
|
function_field='CODE_UTILI',
|
||||||
|
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||||
|
city.climate_reference_city = climate_reference_city
|
||||||
|
city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve()
|
||||||
|
print(f'city created from {file_path}')
|
||||||
|
WeatherFactory(weather_format, city).enrich()
|
||||||
|
print('enrich weather... done')
|
||||||
|
ConstructionFactory(construction_format, city).enrich()
|
||||||
|
print('enrich constructions... done')
|
||||||
|
UsageFactory(usage_format, city).enrich()
|
||||||
|
print('enrich usage... done')
|
||||||
|
for building in city.buildings:
|
||||||
|
building.energy_systems_archetype_name = 'system 1 gas pv'
|
||||||
|
EnergySystemsFactory(energy_systems_format, city).enrich()
|
||||||
|
print('enrich systems... done')
|
||||||
|
|
||||||
|
print('exporting:')
|
||||||
|
sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
|
||||||
|
SraEngine(city, sra_file, tmp_folder)
|
||||||
|
print(' sra processed...')
|
||||||
|
catalog = CostCatalogFactory('montreal_custom').catalog
|
||||||
|
|
||||||
|
for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
||||||
|
|
||||||
|
if retrofitting_scenario in (SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV):
|
||||||
|
for building in city.buildings:
|
||||||
|
building.year_of_construction = RETROFITTING_YEAR_CONSTRUCTION
|
||||||
|
ConstructionFactory(CONSTRUCTION_FORMAT, city).enrich()
|
||||||
|
print('enrich retrofitted constructions... done')
|
||||||
|
|
||||||
|
if retrofitting_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||||
|
for building in city.buildings:
|
||||||
|
building.energy_systems_archetype_name = 'system 6 electricity pv'
|
||||||
|
EnergySystemsFactory(ENERGY_SYSTEM_FORMAT, city).enrich()
|
||||||
|
print('enrich systems... done')
|
||||||
|
|
||||||
|
MonthlyEnergyBalanceEngine(city, tmp_folder)
|
||||||
|
print(' insel processed...')
|
||||||
|
|
||||||
|
for building in city.buildings:
|
||||||
|
for energy_system in building.energy_systems:
|
||||||
|
if cte.HEATING in energy_system.demand_types:
|
||||||
|
energy_system.generation_system.heat_power = building.heating_peak_load[cte.YEAR][0]
|
||||||
|
if cte.COOLING in energy_system.demand_types:
|
||||||
|
energy_system.generation_system.cooling_power = building.cooling_peak_load[cte.YEAR][0]
|
||||||
|
print(f' heating consumption {building.heating_consumption[cte.YEAR][0]}')
|
||||||
|
print('importing results:')
|
||||||
|
results = Results(city, out_path)
|
||||||
|
results.print()
|
||||||
|
print('results printed...')
|
||||||
|
|
||||||
|
print('[simulation end]')
|
||||||
|
|
||||||
|
print(f'beginning costing scenario {retrofitting_scenario} systems... done')
|
||||||
|
|
||||||
|
for building in city.buildings:
|
||||||
|
total_floor_area = 0
|
||||||
|
function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function]
|
||||||
|
archetype = _search_archetype(catalog, function)
|
||||||
|
print('lcc for first building started')
|
||||||
|
if "gas" in building.energy_systems_archetype_name:
|
||||||
|
FUEL_TYPE = 1
|
||||||
|
else:
|
||||||
|
FUEL_TYPE = 0
|
||||||
|
|
||||||
|
lcc = LifeCycleCosts(building, archetype, NUMBER_OF_YEARS, CONSUMER_PRICE_INDEX, ELECTRICITY_PEAK_INDEX,
|
||||||
|
ELECTRICITY_PRICE_INDEX, GAS_PRICE_INDEX, DISCOUNT_RATE, retrofitting_scenario, FUEL_TYPE)
|
||||||
|
global_capital_costs, global_capital_incomes = lcc.calculate_capital_costs()
|
||||||
|
global_end_of_life_costs = lcc.calculate_end_of_life_costs()
|
||||||
|
global_operational_costs = lcc.calculate_total_operational_costs
|
||||||
|
global_maintenance_costs = lcc.calculate_total_maintenance_costs()
|
||||||
|
global_operational_incomes = lcc.calculate_total_operational_incomes(retrofitting_scenario)
|
||||||
|
full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve()
|
||||||
|
with pd.ExcelWriter(full_path_output) as writer:
|
||||||
|
global_capital_costs.to_excel(writer, sheet_name='global_capital_costs')
|
||||||
|
global_end_of_life_costs.to_excel(writer, sheet_name='global_end_of_life_costs')
|
||||||
|
global_operational_costs.to_excel(writer, sheet_name='global_operational_costs')
|
||||||
|
global_maintenance_costs.to_excel(writer, sheet_name='global_maintenance_costs')
|
||||||
|
global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
|
||||||
|
global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')
|
||||||
|
|
||||||
|
investmentcosts = pd.DataFrame([])
|
||||||
|
print('RETROFITTING SCENARIO', retrofitting_scenario)
|
||||||
|
if retrofitting_scenario == 0:
|
||||||
|
investmentcosts = [global_capital_costs['B2010_opaque_walls'][0],
|
||||||
|
global_capital_costs['B2020_transparent'][0],
|
||||||
|
global_capital_costs['B3010_opaque_roof'][0],
|
||||||
|
global_capital_costs['B10_superstructure'][0],
|
||||||
|
global_capital_costs['D3020_heat_generating_systems'][0],
|
||||||
|
global_capital_costs['D3080_other_hvac_ahu'][0],
|
||||||
|
global_capital_costs['D5020_lighting_and_branch_wiring'][0],
|
||||||
|
global_capital_costs['D301010_photovoltaic_system'][0]]
|
||||||
|
investmentcosts = pd.DataFrame(investmentcosts)
|
||||||
|
|
||||||
|
else:
|
||||||
|
investmentcosts[f'retrofitting_scenario_{retrofitting_scenario}'] = \
|
||||||
|
[global_capital_costs['B2010_opaque_walls'][0],
|
||||||
|
global_capital_costs['B2020_transparent'][0],
|
||||||
|
global_capital_costs['B3010_opaque_roof'][0],
|
||||||
|
global_capital_costs['B10_superstructure'][0],
|
||||||
|
global_capital_costs['D3020_heat_generating_systems'][0],
|
||||||
|
global_capital_costs['D3080_other_hvac_ahu'][0],
|
||||||
|
global_capital_costs['D5020_lighting_and_branch_wiring'][0],
|
||||||
|
global_capital_costs['D301010_photovoltaic_system'][0]]
|
||||||
|
|
||||||
|
investmentcosts.index = ['Opaque walls', 'Transparent walls', 'Opaque roof', 'Superstructure',
|
||||||
|
'Heat generation systems', 'Other HVAC AHU', 'Lighting and branch wiring', 'PV systems']
|
||||||
|
|
||||||
|
df_capital_costs_skin = (
|
||||||
|
global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] +
|
||||||
|
global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure']
|
||||||
|
)
|
||||||
|
df_capital_costs_systems = (
|
||||||
|
global_capital_costs['D3020_heat_generating_systems'] +
|
||||||
|
global_capital_costs['D3030_cooling_generation_systems'] +
|
||||||
|
global_capital_costs['D3080_other_hvac_ahu'] +
|
||||||
|
global_capital_costs['D5020_lighting_and_branch_wiring'] +
|
||||||
|
global_capital_costs['D301010_photovoltaic_system']
|
||||||
|
)
|
||||||
|
df_end_of_life_costs = global_end_of_life_costs['End_of_life_costs']
|
||||||
|
df_operational_costs = (
|
||||||
|
global_operational_costs['Fixed_costs_electricity_peak'] +
|
||||||
|
global_operational_costs['Fixed_costs_electricity_monthly'] +
|
||||||
|
global_operational_costs['Fixed_costs_electricity_peak'] +
|
||||||
|
global_operational_costs['Fixed_costs_electricity_monthly'] +
|
||||||
|
global_operational_costs['Variable_costs_electricity'] +
|
||||||
|
global_operational_costs['Fixed_costs_gas'] +
|
||||||
|
global_operational_costs['Variable_costs_gas']
|
||||||
|
)
|
||||||
|
df_maintenance_costs = (
|
||||||
|
global_maintenance_costs['Heating_maintenance'] +
|
||||||
|
global_maintenance_costs['Cooling_maintenance'] +
|
||||||
|
global_maintenance_costs['PV_maintenance']
|
||||||
|
)
|
||||||
|
df_operational_incomes = global_operational_incomes['Incomes electricity']
|
||||||
|
|
||||||
|
df_capital_incomes = (
|
||||||
|
global_capital_incomes['Subsidies construction'] +
|
||||||
|
global_capital_incomes['Subsidies HVAC'] +
|
||||||
|
global_capital_incomes['Subsidies PV']
|
||||||
|
)
|
||||||
|
|
||||||
|
life_cycle_costs_capital_skin = _npv_from_list(DISCOUNT_RATE, df_capital_costs_skin.values.tolist())
|
||||||
|
life_cycle_costs_capital_systems = _npv_from_list(DISCOUNT_RATE, df_capital_costs_systems.values.tolist())
|
||||||
|
life_cycle_costs_end_of_life_costs = _npv_from_list(DISCOUNT_RATE, df_end_of_life_costs.values.tolist())
|
||||||
|
life_cycle_operational_costs = _npv_from_list(DISCOUNT_RATE, df_operational_costs.values.tolist())
|
||||||
|
life_cycle_maintenance_costs = _npv_from_list(DISCOUNT_RATE, df_maintenance_costs.values.tolist())
|
||||||
|
life_cycle_operational_incomes = _npv_from_list(DISCOUNT_RATE, df_operational_incomes.values.tolist())
|
||||||
|
life_cycle_capital_incomes = _npv_from_list(DISCOUNT_RATE, df_capital_incomes.values.tolist())
|
||||||
|
|
||||||
|
life_cycle_costs = (
|
||||||
|
life_cycle_costs_capital_skin +
|
||||||
|
life_cycle_costs_capital_systems +
|
||||||
|
life_cycle_costs_end_of_life_costs +
|
||||||
|
life_cycle_operational_costs +
|
||||||
|
life_cycle_maintenance_costs -
|
||||||
|
life_cycle_operational_incomes -
|
||||||
|
life_cycle_capital_incomes
|
||||||
|
)
|
||||||
|
total_floor_area += lcc.calculate_total_floor_area()
|
||||||
|
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
|
||||||
|
life_cycle_costs_capital_systems,
|
||||||
|
life_cycle_costs_end_of_life_costs,
|
||||||
|
life_cycle_operational_costs,
|
||||||
|
life_cycle_maintenance_costs,
|
||||||
|
-life_cycle_operational_incomes,
|
||||||
|
-life_cycle_capital_incomes]
|
||||||
|
|
||||||
|
life_cycle_results.index = ['total_capital_costs_skin',
|
||||||
|
'total_capital_costs_systems',
|
||||||
|
'end_of_life_costs',
|
||||||
|
'total_operational_costs',
|
||||||
|
'total_maintenance_costs',
|
||||||
|
'operational_incomes',
|
||||||
|
'capital_incomes']
|
||||||
|
|
||||||
|
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
|
||||||
|
|
||||||
|
# printing_results(investmentcosts, life_cycle_results, total_floor_area)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
68
costs/__main__emissions.py
Normal file
68
costs/__main__emissions.py
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
"""
|
||||||
|
Costs Workflow
|
||||||
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||||||
|
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||||
|
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
||||||
|
"""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from hub.helpers.dictionaries import Dictionaries
|
||||||
|
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
||||||
|
|
||||||
|
from costs import EMISSION_FACTOR_ELECTRICITY_QUEBEC, EMISSION_FACTOR_GAS_QUEBEC, EMISSION_FACTOR_BIOMASS_QUEBEC, \
|
||||||
|
EMISSION_FACTOR_FUEL_OIL_QUEBEC, EMISSION_FACTOR_DIESEL_QUEBEC, NUMBER_OF_YEARS
|
||||||
|
|
||||||
|
def _search_archetype(costs_catalog, building_function):
|
||||||
|
costs_archetypes = costs_catalog.entries('archetypes').archetypes
|
||||||
|
for building_archetype in costs_archetypes:
|
||||||
|
if str(building_function) == str(building_archetype.function):
|
||||||
|
return building_archetype
|
||||||
|
raise KeyError('archetype not found')
|
||||||
|
|
||||||
|
catalog = CostCatalogFactory('montreal_custom').catalog
|
||||||
|
|
||||||
|
for building in city.buildings:
|
||||||
|
building_heating_consumption = 1000
|
||||||
|
building_domestic_water_consumption = 1000
|
||||||
|
building_cooling_consumption = 1000
|
||||||
|
distribution_systems_electrical_consumption = 1000
|
||||||
|
lighting_electrical_demand = 1000
|
||||||
|
appliances_electrical_demand = 1000
|
||||||
|
rng = range(NUMBER_OF_YEARS)
|
||||||
|
|
||||||
|
function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function]
|
||||||
|
archetype = _search_archetype(catalog, function)
|
||||||
|
|
||||||
|
print('co2 for first building started')
|
||||||
|
if "gas" in building.energy_systems_archetype_name:
|
||||||
|
gas_consumption = building_heating_consumption + building_domestic_water_consumption
|
||||||
|
electricity_consumption = building_cooling_consumption + distribution_systems_electrical_consumption + \
|
||||||
|
lighting_electrical_demand + appliances_electrical_demand
|
||||||
|
biomass_consumption = 0
|
||||||
|
fuel_oil_consumption = 0
|
||||||
|
diesel_consumption = 0
|
||||||
|
else:
|
||||||
|
gas_consumption = 0
|
||||||
|
electricity_consumption = building_heating_consumption + building_domestic_water_consumption + \
|
||||||
|
building_cooling_consumption + distribution_systems_electrical_consumption + \
|
||||||
|
lighting_electrical_demand + appliances_electrical_demand
|
||||||
|
biomass_consumption = 0
|
||||||
|
fuel_oil_consumption = 0
|
||||||
|
diesel_consumption = 0
|
||||||
|
|
||||||
|
CO2_emissions = pd.DataFrame(index=rng, columns=['CO2 emissions gas', 'CO2 emissions electricity',
|
||||||
|
'CO2 Emissions biomass', 'CO2 emissions fueloil',
|
||||||
|
'CO2 emissions diesel'], dtype='float')
|
||||||
|
|
||||||
|
for year in range(1, NUMBER_OF_YEARS+1):
|
||||||
|
|
||||||
|
CO2_emissions.at[year,'CO2 emissions gas'] = gas_consumption * EMISSION_FACTOR_GAS_QUEBEC
|
||||||
|
CO2_emissions.at[year, 'CO2 emissions electricity'] = electricity_consumption * EMISSION_FACTOR_ELECTRICITY_QUEBEC
|
||||||
|
CO2_emissions.at[year, 'CO2 emissions biomass'] = biomass_consumption * EMISSION_FACTOR_BIOMASS_QUEBEC
|
||||||
|
CO2_emissions.at[year, 'CO2 emissions fueloil'] = fuel_oil_consumption * EMISSION_FACTOR_FUEL_OIL_QUEBEC
|
||||||
|
CO2_emissions.at[year, 'CO2 emissions diesel'] = diesel_consumption * EMISSION_FACTOR_DIESEL_QUEBEC
|
||||||
|
|
||||||
|
CO2_emissions_total = CO2_emissions.sum()
|
||||||
|
|
4
costs/data/.gitignore
vendored
Normal file
4
costs/data/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
# Ignore everything in this directory
|
||||||
|
*
|
||||||
|
# Except this file
|
||||||
|
!.gitignore
|
375
costs/life_cycle_costs.py
Normal file
375
costs/life_cycle_costs.py
Normal file
@ -0,0 +1,375 @@
|
|||||||
|
"""
|
||||||
|
LifeCycleCosts module calculates the life cycle costs of one building
|
||||||
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||||||
|
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
|
||||||
|
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import numpy_financial as npf
|
||||||
|
import hub.helpers.constants as cte
|
||||||
|
from costs import SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, PERCENTAGE_CREDIT,INTEREST_RATE,CREDIT_YEARS
|
||||||
|
|
||||||
|
|
||||||
|
class LifeCycleCosts:
|
||||||
|
"""
|
||||||
|
Life cycle cost class
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
|
||||||
|
electricity_price_index, gas_price_index, discount_rate,
|
||||||
|
retrofitting_scenario, fuel_type):
|
||||||
|
self._building = building
|
||||||
|
self._number_of_years = number_of_years
|
||||||
|
self._consumer_price_index = consumer_price_index
|
||||||
|
self._electricity_peak_index = electricity_peak_index
|
||||||
|
self._electricity_price_index = electricity_price_index
|
||||||
|
self._gas_price_index = gas_price_index
|
||||||
|
self._discount_rate = discount_rate
|
||||||
|
self._archetype = archetype
|
||||||
|
self._end_of_life_cost = 0
|
||||||
|
self._capital_costs_at_year_0 = 0
|
||||||
|
self._items = 0
|
||||||
|
self._fuels = 0
|
||||||
|
self._concepts = 0
|
||||||
|
self._retrofitting_scenario = retrofitting_scenario
|
||||||
|
self._total_floor_area = 0
|
||||||
|
self._fuel_type = fuel_type
|
||||||
|
for internal_zone in building.internal_zones:
|
||||||
|
for thermal_zone in internal_zone.thermal_zones:
|
||||||
|
self._total_floor_area += thermal_zone.total_floor_area
|
||||||
|
|
||||||
|
# todo: revise if it works
|
||||||
|
rng = range(number_of_years)
|
||||||
|
self._yearly_capital_costs = pd.DataFrame(index=rng, columns=['B2010_opaque_walls', 'B2020_transparent',
|
||||||
|
'B3010_opaque_roof', 'B10_superstructure',
|
||||||
|
'D301010_photovoltaic_system',
|
||||||
|
'D3020_heat_generating_systems',
|
||||||
|
'D3030_cooling_generation_systems',
|
||||||
|
'D3040_distribution_systems',
|
||||||
|
'D3080_other_hvac_ahu',
|
||||||
|
'D5020_lighting_and_branch_wiring'],
|
||||||
|
dtype='float')
|
||||||
|
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
|
||||||
|
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
|
||||||
|
'Fixed_costs_electricity_monthly',
|
||||||
|
'Variable_costs_electricity', 'Fixed_costs_gas',
|
||||||
|
'Variable_costs_gas'],
|
||||||
|
dtype='float')
|
||||||
|
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance', 'Cooling_maintenance',
|
||||||
|
'PV_maintenance'], dtype='float')
|
||||||
|
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'], dtype='float')
|
||||||
|
|
||||||
|
self._yearly_capital_incomes = pd.DataFrame(index=rng, columns=['Subsidies construction',
|
||||||
|
'Subsidies HVAC', 'Subsidies PV'], dtype='float')
|
||||||
|
|
||||||
|
def calculate_capital_costs(self):
|
||||||
|
"""
|
||||||
|
Calculate capital cost
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
building = self._building
|
||||||
|
archetype = self._archetype
|
||||||
|
|
||||||
|
surface_opaque = 0
|
||||||
|
surface_transparent = 0
|
||||||
|
surface_roof = 0
|
||||||
|
surface_ground = 0
|
||||||
|
capital_cost_pv = 0
|
||||||
|
capital_cost_opaque = 0
|
||||||
|
capital_cost_ground = 0
|
||||||
|
capital_cost_transparent = 0
|
||||||
|
capital_cost_roof = 0
|
||||||
|
capital_cost_heating_equipment = 0
|
||||||
|
capital_cost_cooling_equipment = 0
|
||||||
|
capital_cost_distribution_equipment = 0
|
||||||
|
capital_cost_other_hvac_ahu = 0
|
||||||
|
capital_cost_lighting = 0
|
||||||
|
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
|
||||||
|
for internal_zone in building.internal_zones:
|
||||||
|
for thermal_zone in internal_zone.thermal_zones:
|
||||||
|
for thermal_boundary in thermal_zone.thermal_boundaries:
|
||||||
|
if thermal_boundary.type == 'Ground':
|
||||||
|
surface_ground += thermal_boundary.opaque_area
|
||||||
|
elif thermal_boundary.type == 'Roof':
|
||||||
|
surface_roof += thermal_boundary.opaque_area
|
||||||
|
elif thermal_boundary.type == 'Wall':
|
||||||
|
surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio)
|
||||||
|
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
|
||||||
|
|
||||||
|
chapters = archetype.capital_cost
|
||||||
|
peak_heating = building.heating_peak_load[cte.YEAR][0]/1000
|
||||||
|
peak_cooling = building.cooling_peak_load[cte.YEAR][0]/1000
|
||||||
|
# todo: change area pv when the variable exists
|
||||||
|
roof_area = 0
|
||||||
|
for roof in building.roofs:
|
||||||
|
roof_area += roof.solid_polygon.area
|
||||||
|
surface_pv = roof_area * 0.5
|
||||||
|
|
||||||
|
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0]['B2020_transparent'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0]['B10_superstructure'] = 0
|
||||||
|
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = 0
|
||||||
|
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = 0
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = 0
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = 0
|
||||||
|
|
||||||
|
self._yearly_capital_costs.fillna(0, inplace=True)
|
||||||
|
if self._retrofitting_scenario in (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||||
|
chapter = chapters.chapter('B_shell')
|
||||||
|
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
|
||||||
|
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
|
||||||
|
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
||||||
|
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
|
||||||
|
|
||||||
|
|
||||||
|
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0]['B2020_transparent'] = capital_cost_transparent * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0]['B10_superstructure'] = capital_cost_ground * (1-PERCENTAGE_CREDIT)
|
||||||
|
|
||||||
|
|
||||||
|
if self._retrofitting_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||||
|
chapter = chapters.chapter('D_services')
|
||||||
|
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
|
||||||
|
self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system'] = capital_cost_pv
|
||||||
|
capital_cost_heating_equipment = (
|
||||||
|
peak_heating * chapter.item('D3020_heat_generating_systems').initial_investment[0]
|
||||||
|
)
|
||||||
|
capital_cost_cooling_equipment = (
|
||||||
|
peak_cooling * chapter.item('D3030_cooling_generation_systems').initial_investment[0]
|
||||||
|
)
|
||||||
|
capital_cost_distribution_equipment = (
|
||||||
|
peak_cooling * chapter.item('D3040_distribution_systems').initial_investment[0]
|
||||||
|
)
|
||||||
|
capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
|
||||||
|
capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
||||||
|
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'] = capital_cost_heating_equipment * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = capital_cost_cooling_equipment * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = capital_cost_distribution_equipment * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = capital_cost_other_hvac_ahu * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = capital_cost_lighting * (1-PERCENTAGE_CREDIT)
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years):
|
||||||
|
chapter = chapters.chapter('D_services')
|
||||||
|
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
||||||
|
self._yearly_capital_costs.loc[year, 'B2010_opaque_walls'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_opaque * (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'B2020_transparent'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_transparent * (PERCENTAGE_CREDIT)
|
||||||
|
)
|
||||||
|
self._yearly_capital_costs.loc[year, 'B3010_opaque_roof'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,capital_cost_roof
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'B10_superstructure'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_ground * (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] = -npf.pmt(INTEREST_RATE,CREDIT_YEARS,
|
||||||
|
capital_cost_heating_equipment
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_cooling_equipment
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3040_distribution_systems'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_distribution_equipment
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_other_hvac_ahu
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_lighting
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
|
||||||
|
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
|
||||||
|
* costs_increase
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] += reposition_cost_heating_equipment
|
||||||
|
|
||||||
|
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
|
||||||
|
reposition_cost_cooling_equipment = peak_cooling \
|
||||||
|
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
|
||||||
|
* costs_increase
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] += reposition_cost_cooling_equipment
|
||||||
|
|
||||||
|
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
|
||||||
|
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
|
||||||
|
|
||||||
|
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
|
||||||
|
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
|
||||||
|
* costs_increase
|
||||||
|
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] += reposition_cost_lighting
|
||||||
|
|
||||||
|
if self._retrofitting_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||||
|
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
|
||||||
|
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] += surface_pv \
|
||||||
|
* chapter.item(
|
||||||
|
'D301010_photovoltaic_system').reposition[0] * costs_increase
|
||||||
|
capital_cost_skin = capital_cost_opaque + capital_cost_ground + capital_cost_transparent + capital_cost_roof
|
||||||
|
capital_cost_hvac = (
|
||||||
|
capital_cost_heating_equipment +
|
||||||
|
capital_cost_cooling_equipment +
|
||||||
|
capital_cost_distribution_equipment +
|
||||||
|
capital_cost_other_hvac_ahu + capital_cost_lighting
|
||||||
|
)
|
||||||
|
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = (
|
||||||
|
capital_cost_skin * archetype.income.construction_subsidy/100
|
||||||
|
)
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = capital_cost_hvac * archetype.income.hvac_subsidy/100
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * archetype.income.photovoltaic_subsidy/100
|
||||||
|
self._yearly_capital_incomes.fillna(0, inplace=True)
|
||||||
|
return self._yearly_capital_costs, self._yearly_capital_incomes
|
||||||
|
|
||||||
|
def calculate_end_of_life_costs(self):
|
||||||
|
"""
|
||||||
|
Calculate end of life costs
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
archetype = self._archetype
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
price_increase = math.pow(1 + self._consumer_price_index, year)
|
||||||
|
if year == self._number_of_years:
|
||||||
|
self._yearly_end_of_life_costs.at[
|
||||||
|
year, 'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost * price_increase
|
||||||
|
self._yearly_end_of_life_costs.fillna(0, inplace=True)
|
||||||
|
return self._yearly_end_of_life_costs
|
||||||
|
|
||||||
|
def calculate_total_floor_area(self):
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
return total_floor_area
|
||||||
|
@property
|
||||||
|
def calculate_total_operational_costs(self):
|
||||||
|
"""
|
||||||
|
Calculate total operational costs
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
building = self._building
|
||||||
|
archetype = self._archetype
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
factor_residential = total_floor_area / 80
|
||||||
|
# todo: split the heating between fuels
|
||||||
|
fixed_gas_cost_year_0 = 0
|
||||||
|
variable_gas_cost_year_0 = 0
|
||||||
|
electricity_heating = 0
|
||||||
|
domestic_hot_water_electricity = 0
|
||||||
|
if self._fuel_type == 1:
|
||||||
|
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly * 12 * factor_residential
|
||||||
|
variable_gas_cost_year_0 = (
|
||||||
|
(building.heating_consumption[cte.YEAR][0] + building.domestic_hot_water_consumption[cte.YEAR][0]) / 1000 *
|
||||||
|
archetype.operational_cost.fuels[1].variable[0]
|
||||||
|
)
|
||||||
|
if self._fuel_type == 0:
|
||||||
|
electricity_heating = building.heating_consumption[cte.YEAR][0] / 1000
|
||||||
|
domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000
|
||||||
|
|
||||||
|
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / 1000
|
||||||
|
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
||||||
|
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
||||||
|
electricity_distribution = 0
|
||||||
|
total_electricity_consumption = (
|
||||||
|
electricity_heating + electricity_cooling + electricity_lighting + domestic_hot_water_electricity +
|
||||||
|
electricity_plug_loads + electricity_distribution
|
||||||
|
)
|
||||||
|
print(f'electricity consumption {total_electricity_consumption}')
|
||||||
|
|
||||||
|
# todo: change when peak electricity demand is coded. Careful with factor residential
|
||||||
|
peak_electricity_demand = 0.1*total_floor_area # self._peak_electricity_demand
|
||||||
|
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
||||||
|
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
||||||
|
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
|
||||||
|
price_increase_peak_electricity = math.pow(1 + self._electricity_peak_index, year)
|
||||||
|
price_increase_gas = math.pow(1 + self._gas_price_index, year)
|
||||||
|
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = (
|
||||||
|
peak_electricity_cost_year_0 * price_increase_peak_electricity
|
||||||
|
)
|
||||||
|
|
||||||
|
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = (
|
||||||
|
monthly_electricity_cost_year_0 * price_increase_peak_electricity
|
||||||
|
)
|
||||||
|
self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = float(
|
||||||
|
variable_electricity_cost_year_0 * price_increase_electricity
|
||||||
|
)
|
||||||
|
self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * price_increase_gas
|
||||||
|
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
|
||||||
|
variable_gas_cost_year_0 * price_increase_peak_electricity
|
||||||
|
)
|
||||||
|
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
|
||||||
|
variable_gas_cost_year_0 * price_increase_peak_electricity
|
||||||
|
)
|
||||||
|
self._yearly_operational_costs.fillna(0, inplace=True)
|
||||||
|
|
||||||
|
return self._yearly_operational_costs
|
||||||
|
|
||||||
|
def calculate_total_operational_incomes(self, retrofitting_scenario):
|
||||||
|
"""
|
||||||
|
Calculate total operational incomes
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
building = self._building
|
||||||
|
if cte.YEAR not in building.onsite_electrical_production:
|
||||||
|
onsite_electricity_production = 0
|
||||||
|
else:
|
||||||
|
if retrofitting_scenario == 0 or retrofitting_scenario == 1:
|
||||||
|
onsite_electricity_production = 0
|
||||||
|
else:
|
||||||
|
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
|
||||||
|
# todo: check the adequate assignation of price. Pilar
|
||||||
|
price_export = 0.075 # archetype.income.electricity_export
|
||||||
|
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = (
|
||||||
|
onsite_electricity_production * price_export * price_increase_electricity
|
||||||
|
)
|
||||||
|
|
||||||
|
self._yearly_operational_incomes.fillna(0, inplace=True)
|
||||||
|
return self._yearly_operational_incomes
|
||||||
|
|
||||||
|
def calculate_total_maintenance_costs(self):
|
||||||
|
"""
|
||||||
|
Calculate total maintenance costs
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
building = self._building
|
||||||
|
archetype = self._archetype
|
||||||
|
# todo: change area pv when the variable exists
|
||||||
|
roof_area = 0
|
||||||
|
for roof in building.roofs:
|
||||||
|
roof_area += roof.solid_polygon.area
|
||||||
|
surface_pv = roof_area * 0.5
|
||||||
|
|
||||||
|
peak_heating = building.heating_peak_load[cte.YEAR][0]/1000
|
||||||
|
peak_cooling = building.heating_peak_load[cte.YEAR][0]/1000
|
||||||
|
|
||||||
|
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
||||||
|
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
||||||
|
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
||||||
|
self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = (
|
||||||
|
maintenance_heating_0 * costs_increase
|
||||||
|
)
|
||||||
|
self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = (
|
||||||
|
maintenance_cooling_0 * costs_increase
|
||||||
|
)
|
||||||
|
self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = (
|
||||||
|
maintenance_pv_0 * costs_increase
|
||||||
|
)
|
||||||
|
self._yearly_maintenance_costs.fillna(0, inplace=True)
|
||||||
|
return self._yearly_maintenance_costs
|
4
costs/outputs/.gitignore
vendored
Normal file
4
costs/outputs/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
# Ignore everything in this directory
|
||||||
|
*
|
||||||
|
# Except this file
|
||||||
|
!.gitignore
|
58
costs/printing_results.py
Normal file
58
costs/printing_results.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
import plotly.graph_objects as go
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import plotly.express as px
|
||||||
|
|
||||||
|
|
||||||
|
def printing_results(investmentcosts, life_cycle_results,total_floor_area):
|
||||||
|
|
||||||
|
labels = investmentcosts.index
|
||||||
|
values = investmentcosts['retrofitting_scenario_1']
|
||||||
|
values2 = investmentcosts['retrofitting_scenario_2']
|
||||||
|
values3 = investmentcosts['retrofitting_scenario_3']
|
||||||
|
|
||||||
|
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
|
||||||
|
fig2 = go.Figure(data=[go.Pie(labels=labels, values=values2)])
|
||||||
|
fig3 = go.Figure(data=[go.Pie(labels=labels, values=values3)])
|
||||||
|
# Set the layout properties
|
||||||
|
fig.update_layout(
|
||||||
|
title='Retrofitting scenario 1',
|
||||||
|
showlegend=True
|
||||||
|
)
|
||||||
|
fig2.update_layout(
|
||||||
|
title='Retrofitting scenario 2',
|
||||||
|
showlegend=True
|
||||||
|
)
|
||||||
|
fig3.update_layout(
|
||||||
|
title='Retrofitting scenario 3',
|
||||||
|
showlegend=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Display the chart
|
||||||
|
fig.show()
|
||||||
|
fig2.show()
|
||||||
|
fig3.show()
|
||||||
|
|
||||||
|
df = life_cycle_results / total_floor_area
|
||||||
|
|
||||||
|
# Transpose the DataFrame (swap columns and rows)
|
||||||
|
df_swapped = df.transpose()
|
||||||
|
|
||||||
|
# Reset the index to make the current index a regular column
|
||||||
|
df_swapped = df_swapped.reset_index()
|
||||||
|
|
||||||
|
# Assign new column names
|
||||||
|
df_swapped.columns = ['Scenarios', 'total_capital_costs_skin',
|
||||||
|
'total_capital_costs_systems',
|
||||||
|
'end_of_life_costs',
|
||||||
|
'total_operational_costs',
|
||||||
|
'total_maintenance_costs',
|
||||||
|
'operational_incomes',
|
||||||
|
'capital_incomes']
|
||||||
|
|
||||||
|
df_swapped.index = df_swapped['Scenarios']
|
||||||
|
df_swapped = df_swapped.drop('Scenarios', axis=1)
|
||||||
|
print(df_swapped)
|
||||||
|
fig = px.bar(df_swapped, title='Life Cycle Costs for buildings')
|
||||||
|
fig.show()
|
||||||
|
# Display the chart
|
||||||
|
plt.show()
|
4
costs/tmp/.gitignore
vendored
Normal file
4
costs/tmp/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
# Ignore everything in this directory
|
||||||
|
*
|
||||||
|
# Except this file
|
||||||
|
!.gitignore
|
121
input_files/selected_building_2864.geojson
Normal file
121
input_files/selected_building_2864.geojson
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
{
|
||||||
|
"type": "FeatureCollection",
|
||||||
|
"features": [
|
||||||
|
{
|
||||||
|
"type": "Feature",
|
||||||
|
"id": 2864,
|
||||||
|
"geometry": {
|
||||||
|
"type": "Polygon",
|
||||||
|
"coordinates": [
|
||||||
|
[
|
||||||
|
[
|
||||||
|
-73.55628837310991,
|
||||||
|
45.60732526295055
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.55628287285629,
|
||||||
|
45.607324262904456
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.55609247288925,
|
||||||
|
45.607288563416546
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.55607107262188,
|
||||||
|
45.60734486277528
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.55612487276466,
|
||||||
|
45.60735496306114
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.55609867281544,
|
||||||
|
45.60742366317157
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.55624087271804,
|
||||||
|
45.60745026331904
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.55628837310991,
|
||||||
|
45.60732526295055
|
||||||
|
]
|
||||||
|
]
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"properties": {
|
||||||
|
"OBJECTID_12_13": 2864,
|
||||||
|
"ID_UEV": "02033771",
|
||||||
|
"CIVIQUE_DE": " 8212",
|
||||||
|
"CIVIQUE_FI": " 8212",
|
||||||
|
"NOM_RUE": "avenue Peterborough (ANJ)",
|
||||||
|
"SUITE_DEBU": " ",
|
||||||
|
"MUNICIPALI": "50",
|
||||||
|
"ETAGE_HORS": 1,
|
||||||
|
"NOMBRE_LOG": 1,
|
||||||
|
"ANNEE_CONS": 1960,
|
||||||
|
"CODE_UTILI": "1000",
|
||||||
|
"LETTRE_DEB": " ",
|
||||||
|
"LETTRE_FIN": " ",
|
||||||
|
"LIBELLE_UT": "Logement",
|
||||||
|
"CATEGORIE_": "R\u00c3\u00a9gulier",
|
||||||
|
"MATRICULE8": "0051-49-2041-2-000-0000",
|
||||||
|
"SUPERFICIE": 450,
|
||||||
|
"SUPERFIC_1": 176,
|
||||||
|
"NO_ARROND_": "REM09",
|
||||||
|
"Shape_Leng": 0.000666191644361,
|
||||||
|
"OBJECTID": 2864,
|
||||||
|
"Join_Count": 1,
|
||||||
|
"TARGET_FID": 2864,
|
||||||
|
"feature_id": "bdd1f0fe-89de-46d2-80dc-87d3636df60a",
|
||||||
|
"md_id": " ",
|
||||||
|
"acqtech": 1360,
|
||||||
|
"acqtech_en": "Lidar",
|
||||||
|
"acqtech_fr": "Lidar",
|
||||||
|
"provider": 461,
|
||||||
|
"provideren": "Municipal",
|
||||||
|
"providerfr": "Municipal",
|
||||||
|
"datemin": "20151124",
|
||||||
|
"datemax": "20151208",
|
||||||
|
"haccmin": 2,
|
||||||
|
"haccmax": 2,
|
||||||
|
"vaccmin": 1,
|
||||||
|
"vaccmax": 1,
|
||||||
|
"heightmin": 1.17,
|
||||||
|
"heightmax": 7.5,
|
||||||
|
"elevmin": 45.48,
|
||||||
|
"elevmax": 45.96,
|
||||||
|
"bldgarea": 193.18,
|
||||||
|
"comment": " ",
|
||||||
|
"OBJECTID_1": 2864,
|
||||||
|
"Shape_Le_1": 0.000666191644361,
|
||||||
|
"Shape_Ar_1": 2.22753099997e-08,
|
||||||
|
"OBJECTID_12": 2864,
|
||||||
|
"Join_Count_1": 1,
|
||||||
|
"TARGET_FID_1": 2863,
|
||||||
|
"g_objectid": "897744",
|
||||||
|
"g_co_mrc": "66023",
|
||||||
|
"g_code_mun": "66023",
|
||||||
|
"g_arrond": "REM09",
|
||||||
|
"g_anrole": "2019",
|
||||||
|
"g_usag_pre": "R\u00c3\u00a9sidentiel",
|
||||||
|
"g_no_lot": "1113400",
|
||||||
|
"g_nb_poly_": "1",
|
||||||
|
"g_utilisat": "1000",
|
||||||
|
"g_nb_logem": "1",
|
||||||
|
"g_nb_locau": " ",
|
||||||
|
"g_descript": "Unit\u00c3\u00a9 d'\u00c3\u00a9valuation",
|
||||||
|
"g_id_provi": "66023005149204120000000",
|
||||||
|
"g_sup_tota": "450.1",
|
||||||
|
"g_geometry": "0.000958907",
|
||||||
|
"g_geomet_1": "5.20226e-008",
|
||||||
|
"g_dat_acqu": "2020-02-12 00:00:00.0000000",
|
||||||
|
"g_dat_char": "2020-02-17 00:00:00.0000000",
|
||||||
|
"Shape_Leng_1": 0.000666191644361,
|
||||||
|
"Shape_Area_1": 2.22753099997e-08,
|
||||||
|
"Shape_Length": 0.0006661919640545334,
|
||||||
|
"Shape_Area": 2.22753099997e-08
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
294
input_files/summerschool_one_building.geojson
Normal file
294
input_files/summerschool_one_building.geojson
Normal file
@ -0,0 +1,294 @@
|
|||||||
|
{
|
||||||
|
"type": "FeatureCollection",
|
||||||
|
"features": [
|
||||||
|
{
|
||||||
|
"type": "Feature",
|
||||||
|
"id": 12,
|
||||||
|
"geometry": {
|
||||||
|
"type": "Polygon",
|
||||||
|
"coordinates": [
|
||||||
|
[
|
||||||
|
[
|
||||||
|
-73.57945149010348,
|
||||||
|
45.49793915473101
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945502047383,
|
||||||
|
45.497935600591106
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945748913181,
|
||||||
|
45.49793681276347
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945995778985,
|
||||||
|
45.49793802493576
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57946108986009,
|
||||||
|
45.49793688584562
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57946222064952,
|
||||||
|
45.49793574585649
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57946503164756,
|
||||||
|
45.497932909392325
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.5794800321942,
|
||||||
|
45.497917804072586
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57949503273288,
|
||||||
|
45.49790269875081
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57950823165471,
|
||||||
|
45.49788939886833
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57952143057031,
|
||||||
|
45.497876098984314
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57952481016481,
|
||||||
|
45.49787269972034
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57952818975889,
|
||||||
|
45.49786930045622
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57963374256275,
|
||||||
|
45.49776298233438
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57963739684415,
|
||||||
|
45.497759299424665
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57956562282082,
|
||||||
|
45.49772405755894
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.5795624921933,
|
||||||
|
45.497722521006246
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57955974509859,
|
||||||
|
45.4977252944393
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57953557695755,
|
||||||
|
45.497749634054365
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.5795114087957,
|
||||||
|
45.497773973664174
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945076790263,
|
||||||
|
45.49783505227953
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57939012687844,
|
||||||
|
45.49789613086214
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57938759058709,
|
||||||
|
45.49789868818189
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57938505429556,
|
||||||
|
45.49790124550157
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57941717242674,
|
||||||
|
45.49791701633786
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.5794136407655,
|
||||||
|
45.497920563278754
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57943256542505,
|
||||||
|
45.497929854507255
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57944202776348,
|
||||||
|
45.49793450461953
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-73.57945149010348,
|
||||||
|
45.49793915473101
|
||||||
|
]
|
||||||
|
]
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"properties": {
|
||||||
|
"OBJECTID_12": 12,
|
||||||
|
"gml_id": 1340982,
|
||||||
|
"gml_parent": "fme-gen-5fa2a82b-c38e-4bf0-9e8f-10a47b9f64f7",
|
||||||
|
"citygml_ta": "http://www.opengis.net/citygml/building/2.0",
|
||||||
|
"citygml_fe": "cityObjectMember",
|
||||||
|
"citygml__1": " ",
|
||||||
|
"citygml__2": " ",
|
||||||
|
"gml_descri": " ",
|
||||||
|
"gml_name": " ",
|
||||||
|
"citygml_cr": " ",
|
||||||
|
"citygml_te": " ",
|
||||||
|
"externalRe": " ",
|
||||||
|
"external_1": " ",
|
||||||
|
"external_2": " ",
|
||||||
|
"citygml_ge": " ",
|
||||||
|
"citygml_re": " ",
|
||||||
|
"citygml__3": " ",
|
||||||
|
"citygml_ap": " ",
|
||||||
|
"citygml_cl": " ",
|
||||||
|
"citygml__4": " ",
|
||||||
|
"citygml_fu": " ",
|
||||||
|
"citygml__5": " ",
|
||||||
|
"citygml_us": " ",
|
||||||
|
"citygml__6": " ",
|
||||||
|
"citygml_ye": " ",
|
||||||
|
"citygml__7": " ",
|
||||||
|
"citygml_ro": " ",
|
||||||
|
"citygml__8": " ",
|
||||||
|
"citygml_me": 19.113,
|
||||||
|
"citygml__9": "#m",
|
||||||
|
"citygml_st": " ",
|
||||||
|
"citygml_10": " ",
|
||||||
|
"citygml_11": " ",
|
||||||
|
"citygml_12": " ",
|
||||||
|
"citygml_13": " ",
|
||||||
|
"citygml_14": " ",
|
||||||
|
"citygml_ou": " ",
|
||||||
|
"citygml_in": " ",
|
||||||
|
"citygml_bo": " ",
|
||||||
|
"citygml_le": " ",
|
||||||
|
"citygml_15": " ",
|
||||||
|
"citygml_co": " ",
|
||||||
|
"citygml_ad": " ",
|
||||||
|
"Volume": "2931.350",
|
||||||
|
"parcelle": " ",
|
||||||
|
"OBJECTID": 1056,
|
||||||
|
"gml_id_1": "384b2b1c-2e25-4f6a-b082-d272dba3453f",
|
||||||
|
"gml_pare_1": 1340982,
|
||||||
|
"citygml_16": "http://www.opengis.net/citygml/building/2.0",
|
||||||
|
"citygml_17": "boundedBy",
|
||||||
|
"citygml_18": " ",
|
||||||
|
"citygml_19": " ",
|
||||||
|
"gml_desc_1": " ",
|
||||||
|
"gml_name_1": " ",
|
||||||
|
"citygml_20": " ",
|
||||||
|
"citygml_21": " ",
|
||||||
|
"external_3": " ",
|
||||||
|
"external_4": " ",
|
||||||
|
"external_5": " ",
|
||||||
|
"citygml_22": " ",
|
||||||
|
"citygml_23": " ",
|
||||||
|
"citygml_24": " ",
|
||||||
|
"citygml_25": " ",
|
||||||
|
"citygml_26": " ",
|
||||||
|
"citygml_op": " ",
|
||||||
|
"Area": 191.404,
|
||||||
|
"FID_": 0,
|
||||||
|
"Join_Count": 2,
|
||||||
|
"TARGET_FID": 1058,
|
||||||
|
"gml_id_12": 1340982,
|
||||||
|
"gml_pare_2": "fme-gen-5fa2a82b-c38e-4bf0-9e8f-10a47b9f64f7",
|
||||||
|
"citygml_27": "http://www.opengis.net/citygml/building/2.0",
|
||||||
|
"citygml_28": "cityObjectMember",
|
||||||
|
"citygml_29": " ",
|
||||||
|
"citygml_30": " ",
|
||||||
|
"gml_desc_2": " ",
|
||||||
|
"gml_name_2": " ",
|
||||||
|
"citygml_31": " ",
|
||||||
|
"citygml_32": " ",
|
||||||
|
"external_6": " ",
|
||||||
|
"external_7": " ",
|
||||||
|
"external_8": " ",
|
||||||
|
"citygml_33": " ",
|
||||||
|
"citygml_34": " ",
|
||||||
|
"citygml_35": " ",
|
||||||
|
"citygml_36": " ",
|
||||||
|
"citygml_37": " ",
|
||||||
|
"citygml_38": " ",
|
||||||
|
"citygml_39": " ",
|
||||||
|
"citygml_40": " ",
|
||||||
|
"citygml_41": " ",
|
||||||
|
"citygml_42": " ",
|
||||||
|
"citygml_43": " ",
|
||||||
|
"citygml_44": " ",
|
||||||
|
"citygml_45": " ",
|
||||||
|
"citygml_46": " ",
|
||||||
|
"citygml_47": 19.113,
|
||||||
|
"citygml_48": "#m",
|
||||||
|
"citygml_49": " ",
|
||||||
|
"citygml_50": " ",
|
||||||
|
"citygml_51": " ",
|
||||||
|
"citygml_52": " ",
|
||||||
|
"citygml_53": " ",
|
||||||
|
"citygml_54": " ",
|
||||||
|
"citygml_55": " ",
|
||||||
|
"citygml_56": " ",
|
||||||
|
"citygml_57": " ",
|
||||||
|
"citygml_58": " ",
|
||||||
|
"citygml_59": " ",
|
||||||
|
"citygml_60": " ",
|
||||||
|
"citygml_61": " ",
|
||||||
|
"Volume_1": "2931.350",
|
||||||
|
"Field": 0,
|
||||||
|
"Field1": 0,
|
||||||
|
"OBJECTID_1": 1056,
|
||||||
|
"gml_id_12_": "384b2b1c-2e25-4f6a-b082-d272dba3453f",
|
||||||
|
"gml_pare_3": 1340982,
|
||||||
|
"citygml_62": "http://www.opengis.net/citygml/building/2.0",
|
||||||
|
"citygml_63": "boundedBy",
|
||||||
|
"citygml_64": " ",
|
||||||
|
"citygml_65": " ",
|
||||||
|
"gml_desc_3": " ",
|
||||||
|
"gml_name_3": " ",
|
||||||
|
"citygml_66": " ",
|
||||||
|
"citygml_67": " ",
|
||||||
|
"external_9": " ",
|
||||||
|
"externa_10": " ",
|
||||||
|
"externa_11": " ",
|
||||||
|
"citygml_68": " ",
|
||||||
|
"citygml_69": " ",
|
||||||
|
"citygml_70": " ",
|
||||||
|
"citygml_71": " ",
|
||||||
|
"citygml_72": " ",
|
||||||
|
"citygml_73": " ",
|
||||||
|
"Area_1": 191.404,
|
||||||
|
"cityGML_hi": 0,
|
||||||
|
"Z_Min": 46.1162,
|
||||||
|
"Z_Max": 64.399,
|
||||||
|
"Shape_Leng": 63.6906066955,
|
||||||
|
"ID_UEV": "01036804",
|
||||||
|
"CIVIQUE_DE": " 2170",
|
||||||
|
"CIVIQUE_FI": " 2170",
|
||||||
|
"NOM_RUE": "rue Bishop (MTL)",
|
||||||
|
"MUNICIPALI": 50,
|
||||||
|
"ETAGE_HORS": 3,
|
||||||
|
"NOMBRE_LOG": 1,
|
||||||
|
"ANNEE_CONS": 1900,
|
||||||
|
"CODE_UTILI": 6000,
|
||||||
|
"LIBELLE_UT": "Immeuble à bureaux",
|
||||||
|
"CATEGORIE_": "Régulier",
|
||||||
|
"MATRICULE8": "9839-57-7770-3-000-0000",
|
||||||
|
"SUPERFICIE": 259,
|
||||||
|
"SUPERFIC_1": 490,
|
||||||
|
"NO_ARROND_": "REM19",
|
||||||
|
"Shape_Le_1": 0.00093336765858,
|
||||||
|
"Shape_Ar_1": 3.0845126501e-8,
|
||||||
|
"Z_Min_1": null,
|
||||||
|
"Z_Max_1": null,
|
||||||
|
"Shape_Length": 63.69060669550123,
|
||||||
|
"Shape_Area": 174.69050030775531
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
@ -1,56 +0,0 @@
|
|||||||
"""
|
|
||||||
LifeCycleCosts calculates the life cycle costs of one building
|
|
||||||
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
||||||
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
|
|
||||||
"""
|
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
class LifeCycleCosts:
|
|
||||||
|
|
||||||
# todo: this should be (city, costs_catalog) or similar
|
|
||||||
def __init__(self, building, number_of_years, consumer_price_index, discount_rate, end_of_life_cost,
|
|
||||||
capital_costs_at_year_0, items, fuels, concepts):
|
|
||||||
self._building = building
|
|
||||||
self._number_of_years = number_of_years
|
|
||||||
self._consumer_price_index = consumer_price_index
|
|
||||||
self._discount_rate = discount_rate
|
|
||||||
|
|
||||||
self._end_of_life_cost = end_of_life_cost
|
|
||||||
|
|
||||||
self._capital_costs_at_year_0 = capital_costs_at_year_0
|
|
||||||
self._items = items
|
|
||||||
|
|
||||||
self._fuels = fuels
|
|
||||||
|
|
||||||
self._concepts = concepts
|
|
||||||
|
|
||||||
def calculate_capital_costs(self):
|
|
||||||
total_capital_costs = self._capital_costs_at_year_0
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
||||||
for item in self._items:
|
|
||||||
total_capital_costs += item.reposition_costs[year] * costs_increase
|
|
||||||
return total_capital_costs
|
|
||||||
|
|
||||||
def calculate_end_of_life_costs(self):
|
|
||||||
price_increase = 0
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
price_increase += math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
||||||
return self._end_of_life_cost * price_increase
|
|
||||||
|
|
||||||
def calculate_total_operational_costs(self):
|
|
||||||
total_operational_costs = 0
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
for fuel in self._fuels:
|
|
||||||
total_operational_costs += fuel.operational_cost \
|
|
||||||
* math.pow(1 + fuel.energy_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
||||||
return total_operational_costs
|
|
||||||
|
|
||||||
def calculate_total_maintenance_costs(self):
|
|
||||||
total_maintenance_costs = 0
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year)
|
|
||||||
for concept in self._concepts:
|
|
||||||
total_maintenance_costs += concept.mantainance_costs * costs_increase
|
|
||||||
return total_maintenance_costs
|
|
31
main.py
31
main.py
@ -1,31 +0,0 @@
|
|||||||
"""
|
|
||||||
Costs Workflow
|
|
||||||
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
||||||
Copyright © 2022 Project Author Pilar Monsalvete Álvarez de Uribarri pilar.monsalvete@concordia.ca
|
|
||||||
"""
|
|
||||||
|
|
||||||
from pathlib import Path
|
|
||||||
from imports.geometry_factory import GeometryFactory
|
|
||||||
from life_cycle_costs import LifeCycleCosts
|
|
||||||
|
|
||||||
gml_file = 'city.gml'
|
|
||||||
file = Path(gml_file).resolve()
|
|
||||||
city = GeometryFactory('gml', file).city
|
|
||||||
|
|
||||||
number_of_years = 40
|
|
||||||
consumer_price_index = 0.1
|
|
||||||
|
|
||||||
for building in city.buildings:
|
|
||||||
lcc = LifeCycleCosts(building, number_of_years, consumer_price_index, costs_catalog)
|
|
||||||
total_capital_costs = lcc.calculate_capital_costs()
|
|
||||||
end_of_life_costs = lcc.calculate_end_of_life_costs()
|
|
||||||
total_operational_costs = lcc.calculate_total_operational_costs()
|
|
||||||
total_maintenance_costs = lcc.calculate_total_maintenance_costs()
|
|
||||||
life_cycle_costs = total_capital_costs + end_of_life_costs + total_operational_costs + total_maintenance_costs
|
|
||||||
|
|
||||||
print(f'Building name: {building.name}')
|
|
||||||
print(f'Capital costs: {total_capital_costs}')
|
|
||||||
print(f'End of life costs: {end_of_life_costs}')
|
|
||||||
print(f'Operational costs: {total_operational_costs}')
|
|
||||||
print(f'Maintenance costs: {total_maintenance_costs}')
|
|
||||||
print(f'Life cycle costs: {life_cycle_costs}')
|
|
4
out_files/.gitignore
vendored
Normal file
4
out_files/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
# Ignore everything in this directory
|
||||||
|
.gitignore
|
||||||
|
# Except this file
|
||||||
|
!.gitignore
|
2
resources.txt
Normal file
2
resources.txt
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
numpy_financial
|
||||||
|
cerc_hub
|
Loading…
Reference in New Issue
Block a user