""" LifeCycleCosts calculates the life cycle costs of one building SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca Project contributor © 2023 Author Oriol Gavaldà Torrellas oriol.gavalda@concordia.ca """ import math import pandas as pd import numpy as np from datetime import date import hub.helpers.constants as cte class LifeCycleCosts: def __init__(self, building, archetype, number_of_years, consumer_price_index, discount_rate, retrofitting_scenario, heating_scop, cooling_seer, peak_electricity_demand, factor_pv,factor_peak_lights): self._building = building self._number_of_years = number_of_years self._consumer_price_index = consumer_price_index self._discount_rate = discount_rate self._archetype = archetype self._end_of_life_cost = 0 self._capital_costs_at_year_0 = 0 self._items = 0 self._fuels = 0 self._concepts = 0 self._retrofitting_scenario = retrofitting_scenario self._total_floor_area = 0 for internal_zone in building.internal_zones: for thermal_zone in internal_zone.thermal_zones: self._total_floor_area += thermal_zone.total_floor_area self._heating_scop = heating_scop self._cooling_seer = cooling_seer self._peak_electricity_demand = peak_electricity_demand self._factor_pv = factor_pv self._peak_lights = factor_peak_lights #todo: revise if it works rng = range(40) self._yearly_capital_costs = pd.DataFrame(index=rng , columns=['B2010_opaque_walls', 'B2020_transparent', 'B3010_opaque_roof','B10_superstructure', 'D301010_photovoltaic_system','D3020_heat_generating_systems', 'D3030_cooling_generation_systems','D3040_distribution_systems', 'D3080_other_hvac_ahu','D5020_lighting_and_branch_wiring', 'D_services'], dtype='float') self._yearly_capital_costs.replace(np.nan,0) def calculate_capital_costs(self): building = self._building archetype = self._archetype factor_pv = self._factor_pv surface_opaque = 0 surface_transparent = 0 surface_roof = 0 surface_ground = 0 total_floor_area = self._total_floor_area for internal_zone in building.internal_zones: for thermal_zone in internal_zone.thermal_zones: for thermal_boundary in thermal_zone.thermal_boundaries: if thermal_boundary.type == 'Ground': surface_ground += thermal_boundary.opaque_area elif thermal_boundary.type == 'Roof': surface_roof += thermal_boundary.opaque_area elif thermal_boundary.type == 'Wall': surface_opaque += thermal_boundary.opaque_area * (1-thermal_boundary.window_ratio) surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio chapters = archetype.capital_cost capital_cost_skin = 0 capital_cost_services = 0 reposition_cost_pv = 0 peak_heating = 0.1*self._total_floor_area peak_cooling = 0.1*self._total_floor_area if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3: chapter = chapters.chapter('B_shell') capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0] capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0] capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0] capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0] capital_cost_skin = capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground self._yearly_capital_costs.loc[0]['B2010_opaque_walls'],self._yearly_capital_costs.loc[0]['B2020_transparent'], \ self._yearly_capital_costs.loc[0]['B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\ self._yearly_capital_costs.loc[0]['B_Shell']\ =[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin] if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3: chapter = chapters.chapter('D_services') capital_cost_pv = surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0] self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system']=capital_cost_pv for year in range(1, self._number_of_years + 1): costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0: reposition_cost_pv += surface_roof * factor_pv * chapter.item('D301010_photovoltaic_system').reposition[ 0] * costs_increase self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_roof * \ factor_pv * chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase capital_cost_heating_equipment = peak_heating \ * chapter.item('D3020_heat_generating_systems').initial_investment[0] capital_cost_cooling_equipment = peak_cooling \ * chapter.item('D3030_cooling_generation_systems').initial_investment[0] capital_cost_distribution_equipment = peak_cooling \ * chapter.item('D3040_distribution_systems').initial_investment[0] capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0] capital_cost_lighting = total_floor_area * self._peak_lights \ * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0] capital_cost_services = capital_cost_pv + capital_cost_heating_equipment + capital_cost_cooling_equipment\ + capital_cost_distribution_equipment + capital_cost_other_hvac_ahu \ + capital_cost_lighting self._yearly_capital_costs.loc[0]['D3020_heat_generating_systems'], self._yearly_capital_costs.loc[0]['D3030_cooling_generation_systems'], \ self._yearly_capital_costs.loc[0]['D3040_distribution_systems'], self._yearly_capital_costs.loc[0]['D3080_other_hvac_ahu'], \ self._yearly_capital_costs.loc[0]['D5020_lighting_and_branch_wiring'], self._yearly_capital_costs.loc[0]['D_services'] \ = [capital_cost_heating_equipment, capital_cost_cooling_equipment, capital_cost_distribution_equipment, capital_cost_other_hvac_ahu, capital_cost_lighting, capital_cost_services] reposition_cost_heating_equipment = 0 reposition_cost_cooling_equipment = 0 reposition_cost_lighting = 0 reposition_cost_hvac_ahu = 0 for year in range(1, self._number_of_years + 1): chapter = chapters.chapter('D_services') costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0: reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \ * costs_increase self._yearly_capital_costs.loc[year]['D3020_heat_generating_systems'] = reposition_cost_heating_equipment if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0: reposition_cost_cooling_equipment = peak_cooling \ * chapter.item('D3030_cooling_generation_systems').reposition[0] \ * costs_increase self._yearly_capital_costs.loc[year]['D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0: reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase self._yearly_capital_costs.loc[year]['D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0: reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \ * costs_increase self._yearly_capital_costs.loc[year]['D5020_lighting_and_branch_wiring'] = reposition_cost_lighting capital_cost_subtotal = capital_cost_skin + capital_cost_services capital_cost_total = capital_cost_subtotal * (1+chapters.design_allowance) * (1+chapters.overhead_and_profit) reposition_cost_subtotal = reposition_cost_pv + reposition_cost_heating_equipment \ + reposition_cost_cooling_equipment + reposition_cost_hvac_ahu \ + reposition_cost_hvac_ahu + reposition_cost_lighting reposition_cost_total = reposition_cost_subtotal * (1+chapters.design_allowance) * (1+chapters.overhead_and_profit) life_cycle_cost_capital_total = capital_cost_total + reposition_cost_total self._yearly_capital_costs.fillna(0,inplace=True) return life_cycle_cost_capital_total def calculate_end_of_life_costs(self): archetype = self._archetype total_floor_area = self._total_floor_area price_increase = 0 for year in range(1, self._number_of_years + 1): price_increase += math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) price_increase_average = price_increase/self._number_of_years return total_floor_area * archetype.end_of_life_cost*price_increase_average def calculate_total_operational_costs(self): building = self._building archetype = self._archetype total_operational_costs = 0 peak_cost = 0 monthly_cost = 0 variable_cost = 0 total_floor_area = self._total_floor_area electricity_heating = building.heating[cte.YEAR]['insel meb'] / (self._heating_scop*1000) electricity_cooling = building.cooling[cte.YEAR]['insel meb'] / (self._cooling_seer*1000) electricity_lighting = building.lighting_electrical_demand['month']['insel meb'].sum()/1000 domestic_hot_water_demand = building.domestic_hot_water_heat_demand['month']['insel meb'].sum()/1000 electricity_plug_loads = building.appliances_electrical_demand['month']['insel meb'].sum()/1000 total_electricity_consumption = electricity_cooling[0] + electricity_heating[0] + electricity_lighting \ + domestic_hot_water_demand + electricity_plug_loads print(f'total electricity consumption: {total_electricity_consumption}') peak_electricity_demand = self._peak_electricity_demand operational_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0] peak_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12 monthly_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * (total_floor_area/100) print(f'operational_cost_year_0 {operational_cost_year_0}') print(f'peak_cost_year_0 {peak_cost_year_0}') print(f'monthly_cost_year_0 {monthly_cost_year_0}') for year in range(1, self._number_of_years + 1): peak_cost += operational_cost_year_0 \ * math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) monthly_cost += peak_cost_year_0 \ * math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) variable_cost += monthly_cost_year_0 \ * math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) total_operational_costs = peak_cost + monthly_cost + variable_cost return total_operational_costs def calculate_total_maintenance_costs(self): building = self._building archetype = self._archetype factor_pv = self._factor_pv surface_roof = 0 maintenance_pv = 0 maintenance_heating = 0 maintenance_cooling = 0 peak_heating = 0.1 * self._total_floor_area peak_cooling = 0.1 * self._total_floor_area for internal_zone in building.internal_zones: for thermal_zone in internal_zone.thermal_zones: for thermal_boundary in thermal_zone.thermal_boundaries: if thermal_boundary.type == 'Roof': surface_roof += thermal_boundary.opaque_area surface_pv = surface_roof * factor_pv maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling for year in range(1, self._number_of_years + 1): costs_increase = math.pow(1 + self._consumer_price_index, year) / math.pow(1 + self._discount_rate, year) maintenance_pv += maintenance_pv_0 * costs_increase maintenance_heating += maintenance_heating_0 * costs_increase maintenance_cooling += maintenance_cooling_0 * costs_increase total_maintenance_costs = maintenance_pv + maintenance_heating + maintenance_cooling return total_maintenance_costs