""" Costs Workflow SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca """ import glob import os from pathlib import Path import numpy_financial as npf import pandas as pd from energy_systems_sizing import EnergySystemsSizing from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory from hub.helpers.dictionaries import Dictionaries from hub.imports.construction_factory import ConstructionFactory from hub.imports.energy_systems_factory import EnergySystemsFactory from hub.imports.geometry_factory import GeometryFactory from hub.imports.usage_factory import UsageFactory from hub.imports.weather_factory import WeatherFactory from hub.helpers import constants as cte from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine from sra_engine import SraEngine from life_cycle_costs import LifeCycleCosts def _npv_from_list(npv_discount_rate, list_cashflow): lcc_value = npf.npv(npv_discount_rate, list_cashflow) return lcc_value def _search_archetype(costs_catalog, building_function): costs_archetypes = costs_catalog.entries('archetypes').archetypes for building_archetype in costs_archetypes: if str(building_function) == str(building_archetype.function): return building_archetype raise KeyError('archetype not found') file_path = (Path(__file__).parent.parent / 'costs_workflow' / 'input_files' / 'selected_building_2864.geojson') climate_reference_city = 'Montreal' weather_file = 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw' weather_format = 'epw' construction_format = 'nrcan' usage_format = 'comnet' energy_systems_format = 'montreal_custom' attic_heated_case = 0 basement_heated_case = 1 tmp_folder = (Path(__file__).parent.parent / 'monthly_energy_balance_workflow' / 'tmp') out_path = (Path(__file__).parent.parent / 'costs_workflow' / 'out_files') files = glob.glob(f'{out_path}/*') for file in files: if file != '.gitignore': os.remove(file) number_of_years = 31 consumer_price_index = 0.04 electricity_peak_index = 0.05 electricity_price_index = 0.05 gas_price_index = 0.05 discount_rate = 0.03 retrofitting_year_of_construction = 2020 retrofitting_scenarios = [0, 1, 2, 3] life_cycle_results = pd.DataFrame() print('[city creation start]') city = GeometryFactory('geojson', path=file_path, height_field='heightmax', year_of_construction_field='ANNEE_CONS', function_field='CODE_UTILI', function_to_hub=Dictionaries().montreal_function_to_hub_function).city city.climate_reference_city = climate_reference_city city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve() print(f'city created from {file_path}') WeatherFactory(weather_format, city, file_name=weather_file).enrich() print('enrich weather... done') ConstructionFactory(construction_format, city).enrich() print('enrich constructions... done') UsageFactory(usage_format, city).enrich() print('enrich usage... done') for building in city.buildings: building.energy_systems_archetype_name = 'system 1 gas' EnergySystemsFactory(energy_systems_format, city).enrich() print('enrich systems... done') print('exporting:') catalog = CostCatalogFactory('montreal_custom').catalog print('costs catalog access... done') sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve() SraEngine(city, sra_file, tmp_folder, weather_file) print(' sra processed...') for building in city.buildings: building.attic_heated = attic_heated_case building.basement_heated = basement_heated_case for retrofitting_scenario in retrofitting_scenarios: if retrofitting_scenario == 1 or retrofitting_scenario == 3: for building in city.buildings: building.year_of_construction = 2020 ConstructionFactory(construction_format, city).enrich() print('enrich retrofitted constructions... done') if retrofitting_scenario == 2 or retrofitting_scenario == 3: for building in city.buildings: building.energy_systems_archetype_name = 'system 6 electricity pv' EnergySystemsFactory(energy_systems_format, city).enrich() print('enrich systems... done') MonthlyEnergyBalanceEngine(city, tmp_folder) lightingdemand = city.buildings[0].lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000 print(f'lighting first {lightingdemand}') EnergySystemsSizing(city).enrich() print(f'beginning costing scenario {retrofitting_scenario} systems... done') for building in city.buildings: function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function] archetype = _search_archetype(catalog, function) print('lcc for first building started') if "gas" in building.energy_systems_archetype_name: fuel_type = 1 else: fuel_type = 0 print(f'fuel type {fuel_type}') lcc = LifeCycleCosts(building, archetype, number_of_years, consumer_price_index, electricity_peak_index, electricity_price_index, gas_price_index, discount_rate, retrofitting_scenario, fuel_type) global_capital_costs = lcc.calculate_capital_costs() global_end_of_life_costs = lcc.calculate_end_of_life_costs() global_operational_costs = lcc.calculate_total_operational_costs() global_maintenance_costs = lcc.calculate_total_maintenance_costs() global_operational_incomes = lcc.calculate_total_operational_incomes() full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve() with pd.ExcelWriter(full_path_output) as writer: global_capital_costs.to_excel(writer, sheet_name='global_capital_costs') global_end_of_life_costs.to_excel(writer, sheet_name='global_end_of_life_costs') global_operational_costs.to_excel(writer, sheet_name='global_operational_costs') global_maintenance_costs.to_excel(writer, sheet_name='global_maintenance_costs') global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes') df_capital_costs_skin = ( global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] + global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure'] ) df_capital_costs_systems = ( global_capital_costs['D3020_heat_generating_systems'] + global_capital_costs['D3030_cooling_generation_systems'] + global_capital_costs['D3080_other_hvac_ahu'] + global_capital_costs['D5020_lighting_and_branch_wiring'] + global_capital_costs['D301010_photovoltaic_system'] ) df_end_of_life_costs = global_end_of_life_costs['End_of_life_costs'] df_operational_costs = ( global_operational_costs['Fixed_costs_electricity_peak'] + global_operational_costs['Fixed_costs_electricity_monthly'] + global_operational_costs['Fixed_costs_electricity_peak'] + global_operational_costs['Fixed_costs_electricity_monthly'] + global_operational_costs['Variable_costs_electricity'] + global_operational_costs['Fixed_costs_gas'] + global_operational_costs['Variable_costs_gas'] ) df_maintenance_costs = ( global_maintenance_costs['Heating_maintenance'] + global_maintenance_costs['Cooling_maintenance'] + global_maintenance_costs['PV_maintenance'] ) df_operational_incomes = global_operational_incomes['Incomes electricity'] life_cycle_costs_capital_skin = _npv_from_list(discount_rate, df_capital_costs_skin.values.tolist()) life_cycle_costs_capital_systems = _npv_from_list(discount_rate, df_capital_costs_systems.values.tolist()) life_cycle_costs_end_of_life_costs = _npv_from_list(discount_rate, df_end_of_life_costs.values.tolist()) life_cycle_operational_costs = _npv_from_list(discount_rate, df_operational_costs.values.tolist()) life_cycle_maintenance_costs = _npv_from_list(discount_rate, df_maintenance_costs.values.tolist()) life_cycle_operational_incomes = _npv_from_list(discount_rate, df_operational_incomes.values.tolist()) life_cycle_costs = ( life_cycle_costs_capital_skin + life_cycle_costs_capital_systems + life_cycle_costs_end_of_life_costs + life_cycle_operational_costs + life_cycle_maintenance_costs - life_cycle_operational_incomes ) life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin, life_cycle_costs_capital_systems, life_cycle_costs_end_of_life_costs, life_cycle_operational_costs, life_cycle_maintenance_costs, life_cycle_operational_incomes] life_cycle_results.index = [f'total_capital_costs_skin', f'total_capital_costs_systems', f'end_of_life_costs', f'total_operational_costs', f'total_maintenance_costs', f'operational_incomes'] print(life_cycle_results) print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')