""" Cost module """ import pandas as pd from hub.city_model_structure.city import City from configuration import Configuration from capital_costs import LifeCycleCosts class Cost: """ Cost class """ def __init__(self, city: City, number_of_years=31, percentage_credit=0, interest_rate=0.04, credit_years=15, consumer_price_index=0.04, electricity_peak_index=0.05, electricity_price_index=0.05, gas_price_index=0.05, discount_rate=0.03, retrofitting_year_construction=2020, factories_handler='montreal_custom'): self._city = city self._configuration = Configuration(number_of_years, percentage_credit, interest_rate, credit_years, consumer_price_index, electricity_peak_index, electricity_price_index, gas_price_index, discount_rate, retrofitting_year_construction, factories_handler) @property def life_cycle(self) -> pd.DataFrame: """ Get complete life cycle costs :return: DataFrame """ results = pd.DataFrame() for building in self._city.buildings: lcc = LifeCycleCosts(building, self._configuration) global_capital_costs, global_capital_incomes = lcc.calculate_capital_costs() global_end_of_life_costs = lcc.calculate_end_of_life_costs() global_operational_costs = lcc.calculate_total_operational_costs global_maintenance_costs = lcc.calculate_total_maintenance_costs() global_operational_incomes = lcc.calculate_total_operational_incomes() results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin, life_cycle_costs_capital_systems, life_cycle_costs_end_of_life_costs, life_cycle_operational_costs, life_cycle_maintenance_costs, life_cycle_operational_incomes, life_cycle_capital_incomes] life_cycle_results.index = ['total_capital_costs_skin', 'total_capital_costs_systems', 'end_of_life_costs', 'total_operational_costs', 'total_maintenance_costs', 'operational_incomes', 'capital_incomes'] return results """ if "gas" in building.energy_systems_archetype_name: FUEL_TYPE = 1 else: FUEL_TYPE = 0 full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve() with pd.ExcelWriter(full_path_output) as writer: global_capital_costs.to_excel(writer, sheet_name='global_capital_costs') global_end_of_life_costs.to_excel(writer, sheet_name='global_end_of_life_costs') global_operational_costs.to_excel(writer, sheet_name='global_operational_costs') global_maintenance_costs.to_excel(writer, sheet_name='global_maintenance_costs') global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes') global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes') df_capital_costs_skin = ( global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] + global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure'] ) df_capital_costs_systems = ( global_capital_costs['D3020_heat_generating_systems'] + global_capital_costs['D3030_cooling_generation_systems'] + global_capital_costs['D3080_other_hvac_ahu'] + global_capital_costs['D5020_lighting_and_branch_wiring'] + global_capital_costs['D301010_photovoltaic_system'] ) df_end_of_life_costs = global_end_of_life_costs['End_of_life_costs'] df_operational_costs = ( global_operational_costs['Fixed_costs_electricity_peak'] + global_operational_costs['Fixed_costs_electricity_monthly'] + global_operational_costs['Fixed_costs_electricity_peak'] + global_operational_costs['Fixed_costs_electricity_monthly'] + global_operational_costs['Variable_costs_electricity'] + global_operational_costs['Fixed_costs_gas'] + global_operational_costs['Variable_costs_gas'] ) df_maintenance_costs = ( global_maintenance_costs['Heating_maintenance'] + global_maintenance_costs['Cooling_maintenance'] + global_maintenance_costs['PV_maintenance'] ) df_operational_incomes = global_operational_incomes['Incomes electricity'] df_capital_incomes = ( global_capital_incomes['Subsidies construction'] + global_capital_incomes['Subsidies HVAC'] + global_capital_incomes['Subsidies PV'] ) life_cycle_costs_capital_skin = npf.npv(self._discount_rate, list_cashflow)_npv_from_list(, df_capital_costs_skin.values.tolist()) life_cycle_costs_capital_systems = _npv_from_list(DISCOUNT_RATE, df_capital_costs_systems.values.tolist()) life_cycle_costs_end_of_life_costs = _npv_from_list(DISCOUNT_RATE, df_end_of_life_costs.values.tolist()) life_cycle_operational_costs = _npv_from_list(DISCOUNT_RATE, df_operational_costs.values.tolist()) life_cycle_maintenance_costs = _npv_from_list(DISCOUNT_RATE, df_maintenance_costs.values.tolist()) life_cycle_operational_incomes = _npv_from_list(DISCOUNT_RATE, df_operational_incomes.values.tolist()) life_cycle_capital_incomes = _npv_from_list(DISCOUNT_RATE, df_capital_incomes.values.tolist()) life_cycle_costs = ( life_cycle_costs_capital_skin + life_cycle_costs_capital_systems + life_cycle_costs_end_of_life_costs + life_cycle_operational_costs + life_cycle_maintenance_costs - life_cycle_operational_incomes - life_cycle_capital_incomes ) life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin, life_cycle_costs_capital_systems, life_cycle_costs_end_of_life_costs, life_cycle_operational_costs, life_cycle_maintenance_costs, life_cycle_operational_incomes, life_cycle_capital_incomes] life_cycle_results.index = ['total_capital_costs_skin', 'total_capital_costs_systems', 'end_of_life_costs', 'total_operational_costs', 'total_maintenance_costs', 'operational_incomes', 'capital_incomes'] print(life_cycle_results) print(f'Scenario {retrofitting_scenario} {life_cycle_costs}') return results """