""" TestCostsWorkflow test SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2022 Concordia CERC group Copyright © 2022 Project Coder Atiya atiya.atiya@mail.concordia.ca """ from pathlib import Path from unittest import TestCase import pandas as pd import helpers.constants as cte from helpers.monthly_values import MonthlyValues from imports.geometry_factory import GeometryFactory from imports.construction_factory import ConstructionFactory from imports.usage_factory import UsageFactory from imports.weather_factory import WeatherFactory from peak_loads import PeakLoads from costs_workflow.capital_cost import CapitalCost from costs_workflow.life_cycle_costs import LifeCycleCosts from catalog_factories.costs_catalog_factory import CostCatalogFactory class TestPeakLoadsWorkflow(TestCase): """ TestPeakLoadsWorkflow class """ def setUp(self) -> None: """ Test setup :return: None """ self._city = None self._complete_city = None self._example_path = (Path(__file__).parent / 'tests_data').resolve() self._output_path = (Path(__file__).parent / 'tests_outputs').resolve() def _get_citygml(self, file): file_path = (self._example_path / file).resolve() self._city = GeometryFactory('citygml', path=file_path).city self.assertIsNotNone(self._city, 'city is none') return self._city @property def _read_sra_file(self) -> []: path = (self._example_path / "one_building_in_kelowna_sra_SW.out").resolve() _results = pd.read_csv(path, sep='\s+', header=0) id_building = '' header_building = [] _radiation = [] for column in _results.columns.values: if id_building != column.split(':')[1]: id_building = column.split(':')[1] if len(header_building) > 0: _radiation.append(pd.concat([MonthlyValues().month_hour, _results[header_building]], axis=1)) header_building = [column] else: header_building.append(column) _radiation.append(pd.concat([MonthlyValues().month_hour, _results[header_building]], axis=1)) return _radiation def _set_irradiance_surfaces(self, city, irradiance_format): """ saves in building surfaces the correspondent irradiance at different time-scales depending on the mode if building is None, it saves all buildings' surfaces in file, if building is specified, it saves only that specific building values :parameter city: city :return: none """ for radiation in self._read_sra_file: city_object_name = radiation.columns.values.tolist()[1].split(':')[1] building = city.city_object(city_object_name) for column in radiation.columns.values: if column == cte.MONTH: continue header_id = column surface_id = header_id.split(':')[2] surface = building.surface_by_id(surface_id) new_value = pd.DataFrame(radiation[[header_id]].to_numpy(), columns=[irradiance_format]) surface.global_irradiance[cte.HOUR] = new_value def _enrich_city(self, city, weather_file, weather_format, irradiance_format, construction_format, usage_format): WeatherFactory(weather_format, city, file_name=weather_file).enrich() self._set_irradiance_surfaces(city, irradiance_format) for building in city.buildings: building.year_of_construction = 2006 if building.function is None: building.function = cte.LARGE_OFFICE ConstructionFactory(construction_format, city).enrich() UsageFactory(usage_format, city).enrich() def test_workflow(self): outputs_path = (Path(__file__).parent / 'tests_outputs').resolve() gml_file = 'one_building_in_kelowna.gml' city = self._get_citygml(gml_file) weather_file = 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw' weather_format = 'epw' irradiance_format = 'sra' construction_format = 'nrel' usage_format = 'comnet' number_of_years = 40 consumer_price_index = 0.1 discount_rate = 2.5 self._enrich_city(city, weather_file, weather_format, irradiance_format, construction_format, usage_format) # PeakLoads(city, outputs_path, weather_format, irradiance_format) municipality = "montreal" catalog = CostCatalogFactory('montreal_catalog').catalog content = catalog.entries() for building in city.buildings: building_volume = 0.0 building_area = 0.0 total_opaque_area = 0.0 total_transparent_area = 0.0 for internal_zone in building.internal_zones: for thermal_zone in internal_zone.thermal_zones: for thermal_boundary in thermal_zone.thermal_boundaries: if thermal_boundary.opaque_area is not None: total_opaque_area += thermal_boundary.opaque_area if thermal_boundary.windows_areas is not None: total_transparent_area += thermal_boundary.windows_areas building_area += internal_zone.area building_volume += internal_zone.volume bulding_name, heating_load, cooling_load = PeakLoads(city, outputs_path, weather_format, irradiance_format)._results[0] print(bulding_name, heating_load, cooling_load) capital_costs_at_year_0 = CapitalCost.calculate_capital_cost(building_area, municipality, building_volume, total_opaque_area, total_transparent_area, content, heating_load, cooling_load, building.floor_area) print("capital_costs_at_year_0 ", capital_costs_at_year_0) # end_of_life_cost = 0.0 # items = [] # fuels = city.fuels # concepts = [] # LifeCycleCosts(city, number_of_years, consumer_price_index, discount_rate, end_of_life_cost, # capital_costs_at_year_0, items, fuels, concepts).calculate_capital_costs # print(PeakLoads(city, outputs_path, weather_format, irradiance_format)._results[][1])