import numpy as np import plotly.graph_objects as go import plotly.offline as offline import matplotlib.pyplot as plt import plotly.express as px def printing_results(investmentcosts, life_cycle_results,total_floor_area): labels = investmentcosts.index values = investmentcosts['retrofitting_scenario 1'] values2 = investmentcosts['retrofitting_scenario 2'] values3 = investmentcosts['retrofitting_scenario 3'] fig = go.Figure(data=[go.Pie(labels=labels, values=values)]) fig2 = go.Figure(data=[go.Pie(labels=labels, values=values2)]) fig3 = go.Figure(data=[go.Pie(labels=labels, values=values3)]) # Set the layout properties fig.update_layout( title='Retrofitting scenario 1', showlegend=True ) fig2.update_layout( title='Retrofitting scenario 1', showlegend=True ) fig3.update_layout( title='Retrofitting scenario 1', showlegend=True ) # Display the chart fig.show() fig2.show() fig3.show() df = life_cycle_results / total_floor_area # Transpose the DataFrame (swap columns and rows) df_swapped = df.transpose() # Reset the index to make the current index a regular column df_swapped = df_swapped.reset_index() # Assign new column names df_swapped.columns = ['Scenarios', 'total_capital_costs_skin', 'total_capital_costs_systems', 'end_of_life_costs', 'total_operational_costs', 'total_maintenance_costs', 'operational_incomes', 'capital_incomes'] df_swapped.index = df_swapped['Scenarios'] df_swapped = df_swapped.drop('Scenarios', axis=1) print(df_swapped) fig = px.bar(df_swapped, title='Life Cycle Costs for buildings') fig.show() # Display the chart plt.show()