costs_workflow/costs/cost.py
2023-06-01 14:07:41 -04:00

163 lines
7.9 KiB
Python

"""
Cost module
"""
import pandas as pd
from hub.city_model_structure.city import City
from configuration import Configuration
from life_cycle_costs import LifeCycleCosts
class Cost:
"""
Cost class
"""
def __init__(self,
city: City,
number_of_years=31,
percentage_credit=0,
interest_rate=0.04,
credit_years=15,
consumer_price_index=0.04,
electricity_peak_index=0.05,
electricity_price_index=0.05,
gas_price_index=0.05,
discount_rate=0.03,
retrofitting_year_construction=2020,
factories_handler='montreal_custom'):
self._city = city
self._configuration = Configuration(number_of_years,
percentage_credit,
interest_rate, credit_years,
consumer_price_index,
electricity_peak_index,
electricity_price_index,
gas_price_index,
discount_rate,
retrofitting_year_construction,
factories_handler)
@property
def life_cycle(self) -> pd.DataFrame:
"""
Get complete life cycle costs
:return: DataFrame
"""
results = pd.DataFrame()
for building in self._city.buildings:
lcc = LifeCycleCosts(building, self._configuration)
global_capital_costs, global_capital_incomes = lcc.calculate_capital_costs()
global_end_of_life_costs = lcc.calculate_end_of_life_costs()
global_operational_costs = lcc.calculate_total_operational_costs
global_maintenance_costs = lcc.calculate_total_maintenance_costs()
global_operational_incomes = lcc.calculate_total_operational_incomes()
results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
life_cycle_costs_capital_systems,
life_cycle_costs_end_of_life_costs,
life_cycle_operational_costs,
life_cycle_maintenance_costs,
life_cycle_operational_incomes,
life_cycle_capital_incomes]
life_cycle_results.index = ['total_capital_costs_skin',
'total_capital_costs_systems',
'end_of_life_costs',
'total_operational_costs',
'total_maintenance_costs',
'operational_incomes',
'capital_incomes']
return results
"""
if "gas" in building.energy_systems_archetype_name:
FUEL_TYPE = 1
else:
FUEL_TYPE = 0
full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve()
with pd.ExcelWriter(full_path_output) as writer:
global_capital_costs.to_excel(writer, sheet_name='global_capital_costs')
global_end_of_life_costs.to_excel(writer, sheet_name='global_end_of_life_costs')
global_operational_costs.to_excel(writer, sheet_name='global_operational_costs')
global_maintenance_costs.to_excel(writer, sheet_name='global_maintenance_costs')
global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')
df_capital_costs_skin = (
global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] +
global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure']
)
df_capital_costs_systems = (
global_capital_costs['D3020_heat_generating_systems'] +
global_capital_costs['D3030_cooling_generation_systems'] +
global_capital_costs['D3080_other_hvac_ahu'] +
global_capital_costs['D5020_lighting_and_branch_wiring'] +
global_capital_costs['D301010_photovoltaic_system']
)
df_end_of_life_costs = global_end_of_life_costs['End_of_life_costs']
df_operational_costs = (
global_operational_costs['Fixed_costs_electricity_peak'] +
global_operational_costs['Fixed_costs_electricity_monthly'] +
global_operational_costs['Fixed_costs_electricity_peak'] +
global_operational_costs['Fixed_costs_electricity_monthly'] +
global_operational_costs['Variable_costs_electricity'] +
global_operational_costs['Fixed_costs_gas'] +
global_operational_costs['Variable_costs_gas']
)
df_maintenance_costs = (
global_maintenance_costs['Heating_maintenance'] +
global_maintenance_costs['Cooling_maintenance'] +
global_maintenance_costs['PV_maintenance']
)
df_operational_incomes = global_operational_incomes['Incomes electricity']
df_capital_incomes = (
global_capital_incomes['Subsidies construction'] +
global_capital_incomes['Subsidies HVAC'] +
global_capital_incomes['Subsidies PV']
)
life_cycle_costs_capital_skin = npf.npv(self._discount_rate, list_cashflow)_npv_from_list(, df_capital_costs_skin.values.tolist())
life_cycle_costs_capital_systems = _npv_from_list(DISCOUNT_RATE, df_capital_costs_systems.values.tolist())
life_cycle_costs_end_of_life_costs = _npv_from_list(DISCOUNT_RATE, df_end_of_life_costs.values.tolist())
life_cycle_operational_costs = _npv_from_list(DISCOUNT_RATE, df_operational_costs.values.tolist())
life_cycle_maintenance_costs = _npv_from_list(DISCOUNT_RATE, df_maintenance_costs.values.tolist())
life_cycle_operational_incomes = _npv_from_list(DISCOUNT_RATE, df_operational_incomes.values.tolist())
life_cycle_capital_incomes = _npv_from_list(DISCOUNT_RATE, df_capital_incomes.values.tolist())
life_cycle_costs = (
life_cycle_costs_capital_skin +
life_cycle_costs_capital_systems +
life_cycle_costs_end_of_life_costs +
life_cycle_operational_costs +
life_cycle_maintenance_costs -
life_cycle_operational_incomes -
life_cycle_capital_incomes
)
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
life_cycle_costs_capital_systems,
life_cycle_costs_end_of_life_costs,
life_cycle_operational_costs,
life_cycle_maintenance_costs,
life_cycle_operational_incomes,
life_cycle_capital_incomes]
life_cycle_results.index = ['total_capital_costs_skin',
'total_capital_costs_systems',
'end_of_life_costs',
'total_operational_costs',
'total_maintenance_costs',
'operational_incomes',
'capital_incomes']
print(life_cycle_results)
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
return results
"""