EMS/basic_example.py
2024-05-31 11:15:06 -04:00

189 lines
5.7 KiB
Python

from pyomo.environ import *
from numpy import *
import matplotlib.pyplot as plt
# model
model = ConcreteModel()
# Set
model.t = Set(initialize=[1, 2, 3, 4], doc='time')
# Parameter
model.pb = Param(model.t, initialize={1: 3, 2: 1, 3: 2, 4: 4}, doc='Base load')
model.c = Param(model.t, initialize={1: 0.5, 2: 0.1, 3: 1, 4: 0.3}, doc='Cost ')
model.dt = Param(initialize=1, doc='time duration ')
# Variable
model.pl = Var(model.t,bounds=(0, None)) #todo example: 2
# model.pl = Var(RangeSet(1, 4),bounds=(0, 3)) #todo example: 3
# model.pl = Var(RangeSet(1, 4),bounds=(0, 3)) #todo example: 4
# model.pl = Var(RangeSet(1, 4),bounds=(0, 5)) #todo example: 5
# model.pmax = py.Param(initialize=5, doc='Maximum Power ')#todo example: 5
# model.emax = py.Param(initialize=8, doc='Maximum Controllable Energy ')#todo example: 5
# model.plmax = py.Param(initialize=6, doc='Maximum Controllable power')#todo example: 5
#
# Constraints
model.c1 = Constraint(expr=sum([model.pl[i] for i in model.t]) * model.dt == 8)
# todo this is for the example 5
# def total_power(model, i):
# return (model.pb[i] + model.pl[i]) <= model.pmax
# model.c2 = py.Constraint(model.t, rule=total_power, doc='Total power')
# Objective
model.obj = Objective(expr=sum([(model.pb[i] + model.pl[i]) * model.c[i] for i in model.t]) * model.dt)
# Solve
opt = SolverFactory('cplex')
result = opt.solve(model)
print(result)
# print variables
# print('------------Countable variable Solution------------------------')
for i in model.t:
print('x[%i] = %i' % (i, value(model.pl[i])))
print('objective function = ', value(model.obj))
# Plotting
time = []
pbase = []
pload = []
cost = []
for ll in range(len([model.t, model.pb, model.pl, model.c])):
if ll == 0:
for i in model.t:
time.append(value(model.t[i]))
elif ll == 1:
for i in model.pb:
pbase.append(value(model.pb[i]))
elif ll == 2:
for i in model.pl:
pload.append(value(model.pl[i]))
else:
for i in model.c:
cost.append(value(model.c[i]))
fig, (ax0, ax1) = plt.subplots(nrows=2,ncols= 1)
ax0.plot(time, pbase, 'b-', label='Base')
ax0.plot(time, pload, 'g--', label='Controable Load')
ptotal = [pbase[i] + pload[i] for i in range(len(pbase))]
ax0.plot(time, ptotal, 'r', label='Total Load')
ax0.set_ylabel('Electric power (W)')
ax0.legend(loc='upper left')
ax1.plot(time, cost, 'y-+', label='Cost')
ax1.legend(loc='upper left')
ax1.set_xlabel('Time (hour)')
ax1.set_ylabel('Electricity price ($/W/h)')
plt.suptitle("Energy management system-Example (4)")
plt.show()
'''
# another way do the coding, using excel sheet for the data and call them in the code
'''
# import matplotlib.pyplot as plt
# import pandas as pd
# import pyomo.environ as py
# # from pyomo.environ import *
#
# # model
# # from pyomo.core import value
#
# model = py.ConcreteModel()
# data = pd.read_excel('input_data.xlsx', sheet_name='set')
#
# # Set
# model.t = py.Set(initialize=data.time, doc='time')
#
# # Parameter
# model.pb = py.Param(model.t, initialize=dict(zip(data.time.values, data.base_load2.values)), doc='Base load')
# model.c = py.Param(model.t, initialize=dict(zip(data.time.values, data.price.values)), doc='cost')
# model.dt = py.Param(initialize=1, doc='time duration ')
# model.pmax = py.Param(initialize=5, doc='Maximum Power ')
# model.emax = py.Param(initialize=8, doc='Maximum Controllable Energy ')
# model.plmax = py.Param(initialize=6, doc='Maximum Controllable power')
# # for the simplicity of the equation
#
# # Variable
# model.pl = py.Var(model.t, bounds=(0, model.plmax))
#
#
#
# # Constraints
# # note:We can write the constraint like this
# # model.c1 = py.Constraint(expr=sum([pl[i] for i in t]) * dt == 8000)
#
# # note:Other way to write equations of constraints
# def Conctrol_power(model, i):
# return sum([model.pl[i] for i in model.t]) * model.dt == model.emax
# model.c1 = py.Constraint( rule=Conctrol_power, doc='Controllable power')
# def total_power(model, i):
# return (model.pb[i] + model.pl[i]) <= model.pmax
# model.c2 = py.Constraint(model.t, rule=total_power, doc='Total power')
#
#
# def objective_rule(model):
# return sum([(model.pb[i] + model.pl[i]) * model.c[i] for i in model.t])
# model.objective = py.Objective(rule=objective_rule, sense=py.minimize, doc='Define objective function')
#
# # Solve
# opt = py.SolverFactory('cplex')
# result = opt.solve(model)
# print(result)
# # model.pprint()
#
# # Print variables
# print('------------Controllable variable Solution------------------------')
# for i in model.t:
# print('x[%i] = %i' % (i, py.value(model.pl[i])))
# print('objective function = ', py.value(model.objective))
#
# # Plotting
#
# # Plotting
# time = []
# pbase = []
# pload = []
# cost = []
#
# for ll in range(len([model.t, model.pb, model.pl, model.c])):
# if ll == 0:
# for i in model.t:
# time.append(py.value(model.t[i]))
# elif ll == 1:
# for i in model.pb:
# pbase.append(py.value(model.pb[i]))
# elif ll == 2:
# for i in model.pl:
# pload.append(py.value(model.pl[i]))
# else:
# for i in model.c:
# cost.append(py.value(model.c[i]))
#
# fig, (ax0, ax1) = plt.subplots(nrows=2, ncols=1)
#
# ax0.plot(time, pbase, 'b-', label='Base')
# ax0.plot(time, pload, 'g--', label='Controable Load')
# ptotal = [pbase[i] + pload[i] for i in range(len(pbase))]
# ax0.plot(time, ptotal, 'r', label='Total Load')
# ax0.set_ylabel('Electric power (W)')
# ax0.legend(loc='upper left')
# ax1.plot(time, cost, 'y-+', label='Cost')
# ax1.legend(loc='upper left')
# ax1.set_xlabel('Time (hour)')
# ax1.set_ylabel('Electricity price ($/W/h)')
# plt.suptitle("Energy management system-Example (5)")
# plt.show()